首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 641 毫秒
1.
Forests and soils are a major sink of carbon, and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. Studies on methods for examining the future consequences of changes in patterns of land use change and carbon flux gains importance, as they provide different options for CO2 mitigation strategies. In this study, a simulation approach combining Markov chain processes and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Markov chains have been computed by converting the land use change and forestry data of India from 1997 to 1999 into a matrix of conditional probabilities reflecting the changes from one class at time t to another class time t+1. Results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and decrease of about 3.4 Mha and 5.0 Mha in open and scrub forests, if similar land use changes that occurred during 1997–1999 would continue. The limiting probabilities suggested 34.27 percent as dense forest, 6.90 as open forest, 0.4 percent mangrove forest, 0.1 percent scrub and 58 percent as non-forest area. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon source from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce greenhouse gas emissions from land use change and forestry sector in India are also reviewed in the study.  相似文献   

2.
Land-cover changes are caused by human activities and natural ecological processes. Thus, our study uses an interdisciplinary approach to research land-cover changes. We present a method to (i) link socio-economic/environmental factors and land-cover changes, (ii) identify indicators of land-cover changes, and (iii) distinguish between socio-economic and environmental indicators associated with local types of overall land-cover changes. The study was conducted in the Lahn-Dill Highlands, Germany, a typical marginal rural landscape. In this region, we investigated land-cover changes occurring over the period 1945-1999. Land-cover data were derived from multi-temporal aerial photographs. Types of overall land-cover changes characterising the districts within the study area were differentiated. With the help of redundancy analysis (RDA), we analysed the relationships between land-cover changes and widely available socio-economic/environmental factors. The results reveal that both individual land-cover changes at patch level and types of overall land-cover changes characterising districts are correlated with socio-economic and environmental factors. Whereas the stable environmental factors are drivers of land-cover changes in our rural study area, socio-economic factors introduced into the analysis mostly result from land-cover changes. We identified correlative socio-economic indicators that cannot explain land-cover changes, but that in combination with the environmental factors can be used to greatly facilitate the reconstruction of past land-cover changes and thus lead to a better knowledge of land-cover history. Based on the types of overall land-cover changes, the results of the study can be adopted for the study of land-cover changes in other regions.  相似文献   

3.
Western European landscapes have drastically changed since the 1950s, with agricultural intensifications and the spread of urban settlements considered the most important drivers of this land-use/land-cover change. Losses of habitat for fauna and flora have been a direct consequence of this development. In the present study, we relate butterfly occurrence to land-use/land-cover changes over five decades between 1951 and 2000. The study area covers the entire Swiss territory. The 10 explanatory variables originate from agricultural statistics and censuses. Both state as well as rate was used as explanatory variables. Species distribution data were obtained from natural history collections. We selected eight butterfly species: four species occur on wetlands and four occur on dry grasslands. We used cluster analysis to track land-use/land-cover changes and to group communes based on similar trajectories of change. Generalized linear models were applied to identify factors that were significantly correlated with the persistence or disappearance of butterfly species. Results showed that decreasing agricultural areas and densities of farms with more than 10 ha of cultivated land are significantly related with wetland species decline, and increasing densities of livestock seem to have favored disappearance of dry grassland species. Moreover, we show that species declines are not only dependent on land-use/land-cover states but also on the rates of change; that is, the higher the transformation rate from small to large farms, the higher the loss of dry grassland species. We suggest that more attention should be paid to the rates of landscape change as feasible drivers of species change and derive some management suggestions.  相似文献   

4.
In 1979, the Pinelands Commission was established as a regional land-use planning and regulatory agency charged with the implementation of a Comprehensive Management Plan (CMP) for the Pinelands National Reserve (New Jersey, USA). The CMP was created to balance land preservation and development interests in the Reserve. Because water-quality degradation from developed and agricultural landscapes is associated with changes in the composition of biological communities, monitoring landscape changes provides one of the most direct measures of the impact of land-use policies on the Pinelands ecosystem. In this study, we prepared detailed, land-cover maps within randomly selected aerial-photograph plots for a major watershed in the Reserve. We used these land-cover maps to quantify changes in landscape composition and structure (i.e., patch size, patch area, and number of patches) and characterize land-cover transitions in the basin between 1979 and 1991. Because the study period represented the first 12 years of the regional-planning effort in the Reserve, we evaluated the relationship between land-cover transitions and Commission management-area designations which permit different land-use intensities. Although the landscape composition was similar in 1979 and 1991, we found an increase in the total area and number of developed-land, managed-grassland, and barren-land patches. An increase in the number of patches and a decrease in the total area and median and third-quartile patch sizes for forest land and for all patches regardless of cover type indicated that fragmentation of forest land and the landscape as a whole occurred during the study period. The major land-cover transitions that occurred during the period were the loss of forest land to development and associated cover types and the conversion of one agricultural type to another. Overall, land-cover transitions during the period were found to be consistent with the Commission management-area designations, which indicated that the regional-planning effort has been successful in directing human activities to appropriate areas of the basin.  相似文献   

5.
Nicaragua, home to the largest remaining extent of rainforest in Central America (total surface area) and to a significant indigenous population, has lost approximately half of its forest cover since 1950. This major and rapid loss of forest cover has been explained as the consequence of an eastward moving agricultural frontier that cuts through the region of Jinotega. If the current deforestation rate continues, the country could lose its remaining forest cover over the course of the next two decades; therefore, it is essential that the dynamics and relationships of land-use and land-cover change (LUCC) in this region are understood. To examine LUCC in Nicaragua over time, Landsat imagery from the southern portion of the region of Jinotega, taken in 1978, 1987, and 1999 was utilized. A remote-sensing method, supervised classification, which allows for the grouping of spectrally similar values for each year, followed by an image change detection analysis (postclassification comparison) was conducted. Groundtruthing (field validation) was conducted in 2006 to validate the data, which yielded increasing overall accuracy rates of 71.68% for 1978, 82.35% for 1987, and 84.38% for 1999. The classification and change detection results showed that if the agricultural cultivation overtook this region, it happened before 1978. Therefore, the possibility that either deforestation did not actually occur along an agricultural frontier or that it was located further east exists; this would be an interesting subject for future studies. There was, however, clear evidence of increased forest cover from 1987 to 1999 near the urban center, correlating with the enforced reforestation law in the city of Jinotega.  相似文献   

6.
Land-Cover Change Trajectories in Northern Ghana   总被引:3,自引:0,他引:3  
Land-cover change trajectories are an emergent property of complex human–environment systems such as the land-use system. An understanding of the factors responsible for land change trajectories is fundamental for land-use planning and the development of land-related policies. The aims of this study were to characterize and identify the spatial determinants of agricultural land-cover change trajectories in northern Ghana. Land-cover change trajectories were defined using land-cover maps prepared from Landsat Thematic Mapper dataset acquired in 1984, 1992, and 1999. Binary logistic regression was used to model the probability of observing the trajectories as a function of spatially explicit biophysical and socioeconomic independent variables. Population densities generally increased along the continuum of land-use intensity, whereas distance from market and roads generally decreased along this continuum. Apparently, roads and market serve as incentives for settlement and agricultural land use. An increase in population density is an important spatial determinant only for trajectories where the dominant change process is agricultural extensification. A major response to population growth is an increase in cultivation frequency around the main market. Agricultural intensification is highly sensitive to accessibility by roads. The increase in land-use intensity is also associated with low soil quality. These results suggest the need for policies to restore soil fertility for agricultural sustainability. The models also provide a means for identifying functional relationships for in-depth analyses of land-use change in Ghana.  相似文献   

7.
Land-use models can be used to assess the importance of different drivers of land-use change. Local actors make land-use decisions on the basis of both biophysical and policy aspects, but they can also be considered as autonomous drivers as their attitudes and beliefs influence land-use substantially. We use a Bayesian network-based Land-use Modeling Approach (BLUMAP) to analyze influences of local actor characteristics on land-use change in a spatially explicit manner. Our analysis shows that local actor characteristics have a greater influence on land-use change than changes in agricultural policy schemes. Furthermore, focusing on the probabilities of land-use occurrence under different scenarios facilitates the quantification of influences of local actor characteristics on land-use changes and aids in the detection of where land-use changes are more likely to occur. We demonstrate that local actor characteristics could override land-use policy trends; thus, greater consideration should be paid to actors in land-use development processes.  相似文献   

8.
Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990–2000 (DR of evergreen tropical rain forest=4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2–10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.  相似文献   

9.
The BOSAWAS Natural Resource Reserve of Nicaragua was established in 1991, to protect a portion of the remaining tropical rain forest and to promote the sustainable use of the region's resources. Information required to effectively manage the reserve includes the extents and locations of present land-cover types and recent land-cover changes in the management use zones that were delineated by local indigenous communities. These zones include areas designated for conservation, limited resource extraction, agriculture, and watershed protection. Land-cover for 1986 and 1995 was identified for three of the communities from remotely sensed images and then input into a geographic information system database to identify land-cover types within these management use zones. For both dates of the analysis, advanced forest was the dominant land cover, with the conservation zones entirely forested. The amount of both agricultural land and scrub/early secondary forest increased between the two dates, with much of these land-cover classes occurring in the agriculture zones. Conflicts between the land-cover present and designated use were identified in some of the limited-use buffer and watershed protection zones. Changes between 1986 and 1995 were identified by overlaying the two land-cover data sets. Three change processes were identified as occurring: deforestation, reforestation, and reconversion. Changes were concentrated in the agriculture zones but were found to occur in every type of zone, except for conservation. The results of this study will establish baseline information for the future management of the BOSAWAS Reserve, an important component in uniting conservation areas along the Central American isthmus.  相似文献   

10.
Modeling the spatial dynamics of regional land use: the CLUE-S model   总被引:95,自引:3,他引:92  
Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.  相似文献   

11.
The concept of naturalness was developed to assess to what degree landscapes represent a natural state. Protected areas are often regarded as the remnants of untouched landscapes although many landscapes commonly perceived as pristine have a long history of human impact. Here, we introduced a historical perspective into the concept of naturalness and the analysis of the effectiveness of protected areas by analyzing historical trajectories in land-cover and forest communities for the Pictured Rocks National Lakeshore on Michigan’s Upper Peninsula (USA). Distribution of land-cover and forest community types was reconstructed for pre-settlement time (around 1850), the height of agricultural expansion (1928), and modern conditions (2000). Naturalness of the landscape was assessed by analyzing similarity between pre-settlement and current conditions and by assessing landscape continuity (1850–1928–2000). We compared changes in the strictly protected park core zone with those in the inland buffer zone with ongoing sustainable logging, and a not protected area adjacent to the park. Forest was the dominant land-cover type over the entire study period. We detected a gradient in land-cover continuity from the core zone (81 % continuity) to the inland buffer zone (74 %) and the area outside the park (66 %). Northern hardwood was the dominating forest type in all time points with high continuity (76 %). In contrast, pine forests show a more dynamic pattern with more than 50 % of the initial forests switching to non-forest or early succession forest types by 1928. More than half of the study area was considered as “natural virgin” (no changes in land-cover and forest community type) with a higher portion within the park than in the adjacent area. In contrast, areas with low naturalness are more abundant outside the park. Our study demonstrates the value of integrating historical information into naturalness assessments and the results provide useful information for future park management. More broadly speaking, our study advances research on the effectiveness of protected areas, by going beyond simple measures of averted deforestation, and introducing approaches to directly measure naturalness.  相似文献   

12.
A model is used for the dynamic and spatially explicit exploration of near future agricultural land-use changes. In a case study for Ecuador, different plausible scenarios are formulated, taking into account possible developments in national food demand until the year 2010. The protection of nature parks and restrictions due to land degradation are evaluated with respect to their possible spatial impacts on the land-use change dynamics within the country. Under the assumptions of the demand scenarios, agricultural land-use expands significantly, resulting in more use of land in existing agricultural areas and frontier-type expansion into relatively undisturbed natural areas. The patterns of change depend on the increase in demand, competition between land-use types, changes in driving factors of land use, and the area and characteristics of land that is excluded from agricultural use. The modelled land-use dynamics are related to their possible impacts on the natural resource base, specifically soil fertility. The results indicate potential negative effects of land-use changes on the soil nutrient balance and biodiversity. It is argued that spatial and temporal quantification of land-use dynamics at the landscape level can support research and policies aimed at understanding the driving factors of land-use change and the behaviour of complex agro-ecosystems under changing conditions at different scales. In this way, issues dealing with sustainable food production and the management of the natural resource base can be addressed in a more integrated and quantitative manner.  相似文献   

13.
The Barataria Basin, Louisiana, USA, is an extensive wetland and coastal estuary system of great economic and intrinsic value. Although high rates of wetland loss along the coastal margin of the Barataria Basin have been well documented, little information exists on whether freshwater wetlands in the upper basin have changed. Our objectives were to quantify land-cover change in the upper basin over 20 years from 1972–1992 and to determine land-cover transition rates among land-cover types. Using 80-m resolution Landsat MSS data from the North American Landscape Characterization (NALC) data archive, we classified images from three time steps (1972, 1985, 1992) into six land-cover types: agriculture, urban, bottomland hardwood forest, swamp forest, freshwater marsh, and open water. Significant changes in land cover occurred within the upper Barataria Basin over the study period. Urban land increased from 8% to 17% of the total upper basin area, primarily due to conversions from agricultural land, and to a lesser degree, bottomland forest. Swamp forest increased from 30% to 41%, associated with conversions from bottomland hardwood forest and freshwater marsh. Overall, bottomland forest decreased 38% and total wetland area increased 21%. Within the upper Barataria, increases in total wetland area may be due to land subsidence. Based on our results, if present trends in the reduction of bottomland forest land cover were to continue, the upper Barataria Basin may have no bottomland hardwood forests left by the year 2025, as it is subjected to multiple stressors both in the higher elevations (from urbanization) and lower elevations (most likely from land subsidence). These results suggest that changes in the upper freshwater portions of coastal estuaries can be large and quite different from patterns observed in the more saline coastal margins.  相似文献   

14.
Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO2 year?1 in 1921 to 60,635 t CO2 year?1 in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO2 year?1 by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO2 fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas.  相似文献   

15.
Forest cover in the upper Wabash River basin in Indiana was fragmented due to agricultural conversion beginning more than 175 years ago. Currently, urban expansion is an important driver of land-use change in the basin. A land transformation model was applied to the basin to forecast land use from 2000 to 2020. We assessed the effect of this projected land-use change scenario on five forest rodent species at three scales: using occupancy models at the patch level, proportional occupancy models at the landscape level, and ecologically scaled landscape indices to assess the change in connectivity at the watershed level. At the patch and landscape scales, occupancy models had low predictability but suggest that gray squirrels are most susceptible to land-use change. At the watershed scale, declines in connectivity did not correspond with the decline of forest. This study highlights the importance of map resolution and consideration of matrix elements in constructing forecast models. Unforeseen drivers of land use, such as changing economic incentives, may also have important ramifications.  相似文献   

16.
Land change is often studied with Markov models to develop a probability transition matrix. The existing methods dependent on such matrixes cannot effectively characterize some important aspects associated with land change such as status, direction, trend and regional variations. This study presents mathematical models to quantify these elements, defining unbalanced, quasi-balanced and balanced status, one- and two-way transitions and the rising or falling trends. Using these models and remote-sensing imageries, the landscape was studied for a case area, the oasis of Sangong River in Xinjiang, Northwest China where typical arid conditions prevail. Land expansion and contraction among various land types and for the entire oasis were analyzed for the periods of 1978-1987, 1978-1998 and 1987-1998. The changes were closely related to a strong economic growth after the land-reform campaign and adoption of the market economy in China in the 1980s to early 1990s, a process not strictly Markovian that requires stationarity and randomness. Information on land-change status and trend is important for a better understanding of the underlying driving processes but also for land-use planning and decision-making.  相似文献   

17.
The United States has a highly varied landscape because of wide-ranging differences in combinations of climatic, geologic, edaphic, hydrologic, vegetative, and human management (land use) factors. Land uses are dynamic, with the types and rates of change dependent on a host of variables, including land accessibility, economic considerations, and the internal increase and movement of the human population. There is a convergence of evidence that ecoregions are very useful for organizing, interpreting, and reporting information about land-use dynamics. Ecoregion boundaries correspond well with patterns of land cover, urban settlement, agricultural variables, and resource-based industries. We implemented an ecoregion framework to document trends in contemporary land-cover and land-use dynamics over the conterminous United States from 1973 to 2000. Examples of results from six eastern ecoregions show that the relative abundance, grain of pattern, and human alteration of land-cover types organize well by ecoregion and that these characteristics of change, themselves, change through time.  相似文献   

18.
Mountain landscapes are undergoing rapid land-use changes. Settlement expansion, the intensification of agricultural land-use practices, and farmland abandonment result in a decline of natural and semi-natural habitats and the related ecosystem services (ES). In this context, spatial planning has emerged as a key instrument for the management of ES provision. To better understand trade-offs and interactions between settlement growth and ES provision in a spatially explicit manner, we present a new modeling framework coupling an agent-based, agro-economic optimization model and a cellular-automata-based settlement growth model. The framework is applied in an inner alpine valley in the Valais, Switzerland, which experienced rapid settlement growth in recent years. Results demonstrate how the model framework allows support of local planning processes. Particularly cooperation among municipalities and an explicit consideration of ES can inform spatially explicit ES trade-off decisions under increasing demand for land. We conclude that better informed spatial planning processes support ES provision.  相似文献   

19.
Land-cover change has significant influence on carbon storage and fluxes in terrestrial ecosystems. The southern United States is thought to be the largest carbon sink across the conterminous United States. However, the spatial and temporary variability of carbon storage and fluxes due to land-cover change in the southern United States remains unclear. In this study, we first reconstructed the annual data set of land-cover of the southern United States from 1860 to 2003 with a spatial resolution of 8 km. Then we used a spatially explicit process-based biogeochemical model (Terrestrial Ecosystem Model [TEM] 4.3) to simulate the effects of cropland expansion and forest regrowth on the carbon dynamics in this region. The pattern of land-cover change in the southern United States was primarily driven by the change of cropland, including cropland expansion and forest regrowth on abandoned cropland. The TEM simulation estimated that total carbon storage in the southern United States in 1860 was 36.8 Pg C, which likely was overestimated, including 10.8 Pg C in the southeast and 26 Pg C in the south-central. During 1860-2003, a total of 9.4 Pg C, including 6.5 Pg C of vegetation and 2.9 Pg C of soil C pool, was released to the atmosphere in the southern United States. The net carbon flux due to cropland expansion and forest regrowth on abandoned cropland was approximately zero in the entire southern region between 1980 and 2003. The temporal and spatial variability of regional net carbon exchange was influenced by land-cover pattern, especially the distribution of cropland. The land-use analysis in this study is incomplete and preliminary. Finally, the limitations, improvements, and future research needs of this study were discussed.  相似文献   

20.
Detecting Temporal Change in Watershed Nutrient Yields   总被引:2,自引:1,他引:1  
Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-cover change, watershed nutrient yields vary from one year to the next due to many exogenous factors. The interacting effects of land cover and exogenous factors suggest nutrient yields should be treated as distributions, and the effect of land-cover change should be examined by looking for significant changes in the distributions. We compiled nutrient yield distributions from published data. The published data included watersheds with homogeneous land cover that typically reported two or more years of annual nutrient yields for the same watershed. These data were used to construct statistical models, and the models were used to estimate changes in the nutrient yield distributions as a result of land-cover change. Land-cover changes were derived from the National Land Cover Database (NLCD). Total nitrogen (TN) yield distributions increased significantly for 35 of 1550 watersheds and decreased significantly for 51. Total phosphorus (TP) yield distributions increased significantly for 142 watersheds and decreased significantly for 17. The amount of land-cover change required to produce significant shifts in nutrient yield distributions was not constant. Small land-cover changes led to significant shifts in nutrient yield distributions when watersheds were dominated by natural vegetation, whereas much larger land-cover changes were needed to produce significant shifts when watersheds were dominated by urban or agriculture. We discuss our results in the context of the Clean Water Act.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号