首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large proportion of total P in the soils of the area is unavailable to plants and consequently P is the second most limiting nutrient. The labile and moderately labile phosphorus fractions and adsorption characteristics of surface and subsurface horizons of eleven soil profiles in the derived savanna (DS) and the northern Guinea savanna (NGS) of West Africa were assessed. The labile P fractions are the resin and HCO3-extractable inorganic (Pi) and organic (Po) P. The moderately labile fractions are the NaOH-extractable portion of soil P in the Hedley sequential procedure. In the DS soils, the resin P, considered the most readily available fraction, varied from 1 to 14 mg kg−1, HCO3-Pi ranged from 3.3 to 11, and HCO3-PO was between 4 and 12 mg kg−1 in the surface horizon. In the NGS, the topsoil contained 1.5–3 mg kg−1 of resin P, 5–8 mg kg−1 of HCO3-Pi, and 7.5–9.7 mg kg−1 of HCO3-Po. Sodium hydroxide-Po was the largest of the fractions in all the soils studied. It ranged from 23 to 55 mg kg−1 in the topsoil. In general, the labile P levels were higher in soils of the DS than of the NGS and were related to the oxalate-extractable Fe (Feox), and Al (Alox) as well as to soil texture. The subsoil of Kasuwan Magani (profile KS 9–21 cm) required 153 mg P kg−1 to maintain 0.2 mg P l−1 in solution (standard P requirement), and Danayamaka (profile DD 7–32 cm) required 145 mg P kg−1. These could translate to 214 and 200 kg P ha−1 if a plow layer of 10 cm is assumed. Because these are within the plow layer, more P fertilizer would be needed for crop production than in the other soils. The standard P requirement and the adsorption maxima were related to Feox and Alox, dithionite-Fe (Fed), and texture. The increase in labile P content with decreasing Feox and Alox could imply that management practices capable of reducing the activities of Fe and Al in solution might improve P availability.  相似文献   

2.
当前以土壤有机质提升为核心的耕地质量提升是保证粮食安全的基础,但在有机质提升过程中土壤磷素的累积和转化特征仍不清楚.在等碳施用条件下,研究对比不同有机物料投入对菜地不同土层土壤磷的累积、转化和迁移规律,以期同步实现有机质提高和磷肥高效管理.试验设置对照(不施肥)、农户传统施肥、生物炭、鸡粪、餐厨废弃物和玉米秸秆施用这6个处理,于辣椒收获期测定各处理下不同土层有效磷(Olsen-P)和水溶性磷(CaCl2-P)含量、土壤磷组分、有机质(SOM)和pH等指标.在0~5 cm和5~10 cm土层中,农户传统施肥处理有效磷含量最高,4种有机物料处理下有效磷顺序依次为:秸秆>生物炭>鸡粪>餐厨废弃物,秸秆和生物炭处理较餐厨废弃物分别增加59.6%~67.3%和29.1%~36.9%.秸秆处理最易于提升土壤活性磷库,0~5 cm土层土壤活性磷较鸡粪和餐厨废弃物处理分别增加47.3%和35.1%.随着土层深度增加鸡粪处理的有效磷降低比例最少,20~30 cm土层有效磷占表土层的55.9%,而在其他3种物料处理下仅占16.0%~34.0%.和农户传统施肥相比,有机物料施用后pH显著升高0.18~0.36个单位,鸡粪和餐厨废弃物处理的pH显著高于生物炭和秸秆(P<0.05).生物炭处理下SOM含量相比其他3种有机物料显著增加7.7%~17.6%.4种有机物料中,秸秆提高土壤活性磷库的效果最佳,有利于快速提升植物可利用磷;鸡粪处理下磷素最易向下迁移;在基于土壤地力提升的农田管理下,施用生物炭既有利于改善土壤酸碱度和提高SOM,也可避免磷素在耕层过量积累,降低环境风险.  相似文献   

3.
秸秆还田配施化肥对土壤养分及冬小麦产量的影响   总被引:5,自引:2,他引:3  
为探究关中地区秸秆还田配施化肥对土壤养分和冬小麦产量的影响,研究采用裂区试验设计,主区为:秸秆不还田(S0)和秸秆还田(S);副区为:不施肥(WF)、氮肥(NF)和氮磷肥(NPF).应用生态化学计量的方法,探究秸秆还田配施化肥下土壤碳氮磷含量变化及其和产量的关系.结果表明,秸秆和施肥互作对表层(0~20 cm)土壤有机碳、全氮和全磷含量均产生显著影响(P<0.05).与S0WF处理相比,SNPF处理显著提高表层(0~20 cm)土壤有机碳和全氮含量(P<0.05).秸秆和年份互作对表层(0~20 cm)土壤全氮含量产生显著影响(P<0.05),随着秸秆还田时间的增加,在2021年SWF处理下表层(0~20 cm)土壤全氮含量显著高于S0WF (P<0.05).秸秆和施肥及其互作对20~40 cm土层有机碳和全氮含量无显著影响(P>0.05),但对20~40 cm土壤全磷含量产生显著影响(P<0.05),与SWF处理相比,SNPF处理显著增加了20~40 cm土层全磷含量(P<0.05).秸秆还田配施化肥对土壤化学计量特征也产生显著影响.与S0WF处理相比,S0NPF处理能够降低表层(0~20 cm)土壤C:N,提高表层(0~20 cm)土壤C:P和N:P.与SWF处理相比,SNF处理能够降低表层(0~20 cm)土壤C:N.秸秆还田配施化肥对冬小麦产量也产生显著影响,2020年和2021年SNPF处理与S0WF处理相比分别增产24.23%和28.9%.相关性分析表明,产量与C:N (P<0.05)和C:P (P<0.01)呈显著正相关关系.全氮和N:P与处理年份呈极显著正相关关系(P<0.001).综上所述,在关中地区秸秆还田配施氮磷肥处理(SNPF)会改善土壤养分,改变土壤化学计量特征,同时提高产量.因此,本研究结果表明秸秆还田配施氮磷肥(SNPF)是优化区域农田养分管理,提高粮食生产能力的有效途径.  相似文献   

4.
Eutrophication of waterways through delivery of phosphorus (P) and nitrogen (N) from farmland is a problem in many countries. Loss of nutrients from grazed grassland via overland flow is well demonstrated, but the sources of these nutrients and the processes controlling their mobilization into water are not well understood. Much of the nutrient loss in overland flow from grazed pastures may be due to generally increased fertility of the soil–plant system (i.e. background or ‘systematic’ nutrient loss) rather than to immediate loss after fertilizer application [Nash, D., Clemow, L., Hannah, M., Barlow, K., Gangaiya, P., 2005. Modelling phosphorus exports from rain-fed and irrigated pastures in southern Australia. Aust. J. Soil Res. 43, 745–755]. The main aim of this study was to measure the effects of long-term (25 years) superphosphate (Ca(H2PO4)2 + 2CaSO4) fertilizer application (0–23 kg/(ha year)) on P and N in soil, plants, and potential background P and N movement in overland flow (generated using a rainfall simulator) from sheep-grazed pastures in southern Australia. Measurements were taken in autumn, under dry soil conditions, and in winter, under wet soil conditions, 12 and 15 months after the last fertilizer applications, respectively. Superphosphate application caused a strong increase in plant P, soil total P, Olsen P, and Colwell P; and a weaker increase in plant N, soil total N, and inorganic N (ammonium and nitrate). Soil P and N were concentrated in the surface 25 mm of soil. Soil water-extractable P, calcium chloride-extractable P, and calcium chloride organic P were in general only poorly associated with fertilizer application. The concentration of P and, to a lesser extent, the concentration of N in overland flow increased with increasing fertilizer application and showed strong seasonal differences (0.06–0.77 mg P/L and 0.6–5.5 mg N/L in autumn; 0.04–0.20 mg P/L and 0.4–1.7 mg N/L in winter). The P in overland flow was predominantly dissolved reactive P in autumn and particulate P in winter. The N in overland flow contained significant proportions of dissolved organic N, dissolved inorganic N (ammonium and nitrate), and particulate N. The concentrations of P and N in overland flow usually exceeded State water quality targets (<0.04 mg P/L and <0.90 mg N/L), suggesting that background losses of nutrients from these pasture systems could contribute to the eutrophication of waterways.  相似文献   

5.
Phosphorus (P) is one of the main limiting plant nutrients in most tropical soils. Acquiring quantitative information on soil P status is essential for evaluating its sustainable management in agroecosystems. The objective of this study was to evaluate how land-use shifts from semi-permanent food crop systems (CF) to plantations of tea (Camellia sinensis) (TP) and Eucalyptus grandis (EP) impact on both organic and inorganic P species. Determination of phosphorus status combined a P sequential fractionation procedure and 31P nuclear magnetic resonance (NMR) spectroscopy. Sequentially extracted pools included available P by 0.5 M NaHCO3, Al/Fe-P by 0.1 M NaOH, Ca-P by 0.5 M HCl and residual P by 0.5 M H2SO4 after ignition at 550 °C. Soil total P (STP) varied significantly across land uses (P<0.05) with the lowest mean value (1025.6±23.1 mg kg−1) occurring under CF and the highest (1698.0±86.1 mg kg−1) under TP. The largest P-pools were NaOH-P (47–51% of total soil P) and H2SO4-P (25–32%). NaHCO3-Pi under fertilized land uses (CF and TP) was greater than 12 mg kg−1 indicating that these systems were sustainable. Unfertilized EP was P-deficient, probably as the result of organic-matter accretion and subsequent P immobilization in organic forms. 31P NMR revealed that 88–89% of P compounds in NaOH extract were organic with monoester-P accounting for 59.1–60.8%. This was followed by diester-P (9.8–12.4%), teochoic acid (8.4–10.1%), orthophosphate (8.8–9.7%), unknown compounds (7.4–8.4%), pyrophosphate (1.1–4.6%) and phosphonate (0–1.3%). EP had higher diester-P and no phosphonate compound whereas CF had substantial amount of pyrophosphate (4.6%) and less orthophosphate and teochoic acid. These results indicate that these last P compounds are easily mineralizable P forms participating actively in plant P nutrition.  相似文献   

6.
Biofuels can be produced by converting cellulose in crop residues to ethanol. This has recently been viewed as a potential supplement to non-renewable energy sources, especially in the Americas. A 50-yr field experiment was analyzed to determine the influence of (i) removing approximately 22% of the above-ground wheat (Triticum aestivum L.) residue each crop year, and (ii) N and P fertilization on soil carbon (C) in the top 15 cm depth of a fallow–wheat–wheat (F–W–W) rotation. The study was conducted from 1958 to 2007 on a clay soil, at Indian Head in sub-humid southeast Saskatchewan, Canada. Soil C concentrations and bulk densities were measured in the 0–7.5 and 7.5–15 cm depths in 1987, 1996 and 2007 and soil C changes were related to C inputs estimated from straw and root yields calculated from regressions relating these to grain yields. Two soil organic matter models [the Campbell model and the Introductory Carbon Balance Model (ICBM)] were also used to simulate and predict the effects of the treatments on soil C change over time, and to estimate likely soil C change if 50% or 95% of above-ground residues were harvested each crop year. Crop residue removal reduced cumulative C inputs from straw and roots over the 50-yr experiment by only 13%, and this did not significantly (P > 0.05) reduce soil C throughout the experiment duration. However, after 50 yr of applying N fertilizer at recommended rates, soil C increased significantly by about 3 Mg ha−1 compared to the non-fertilized treatment. The simulated effect of removing 50% and 95% of the above-ground residues suggested that removing 50% of the straw would likely have a detectable effect on the soil C, while removing 95% of the straw certainly would. Measurements and model simulations suggest that adoption of no-tillage without proper fertilization will not increase soil C. Although it appears that a modest amount of residue may be safely removed from these Udic Borolls (Black Chernozems) without a measurable effect on soil C, this would only be feasible if accompanied by appropriate fertility management.  相似文献   

7.
Labile soil C and N play vital roles in soil–plant nutrient dynamics, especially in the low input cropping system and are vulnerable to perturbation. Surface (0–0.15 m) soils from three land clearing methods (slash and burn, bulldozed non-windrowed and bulldozed windrowed) and each with two cropping systems (5-and 4-year cropping/2-year cassava fallow) were collected in the humid forest ecosystem of Nigeria.The soils were analysed for total C and N, microbial biomass C and N (SMB C and N), particulate organic matter C and N (POM C and N), water-soluble C, potentially mineralizable N (PMN) and mineral N. The size of the labile C and N and their relative contributions to the organic C and total N differed significantly among land clearing methods, irrespective of the cropping system. Soils under slash and burn had a significantly (p > 0.05) higher particulate organic matter C, N (10.80 and 0.16 g kg−1, respectively) and microbial biomass C and N (1.07 and 0.12 g kg−1) compared to the bulldozed windrow, regardless of the cropping system. Four years cropping/2-year cassava fallow resulted in a significant higher labile C and N, relative to 5-year cropped plots across the land clearing methods. Effect of the treatments on the concentration of PMN and mineral N mirrored the SMB N and POM N. However, the quantity of most of the labile C and N pool and crop yield obtained from the slash and burn and bulldozed non-windrowed treatment did not differ significantly. Hence, bulldozed non-windrowed clearing could be a viable alternative to slash and burn in the case of large-scale farming in ensuring reduced losses of soil organic matter and nutrient during land clearing in the humid tropics.  相似文献   

8.
徐鹏  江长胜  郝庆菊  祝滔 《环境科学》2013,34(10):4009-4016
通过选取缙云山向阳坡同一海拔高度处的亚热带常绿阔叶林(简称林地)、坡耕地、果园和撂荒地,测定分析0~60 cm深度土壤样品有机质及3种活性有机质组分含量,从而揭示了西南地区缙云山不同土地利用方式对土壤有机质、3种活性有机质及其有效率(ER)以及碳库管理指数(CMI)的影响.结果表明,4种土地利用方式下,土壤有机质、活性有机质含量以及ER和CMI均随土壤深度的增加而降低,其中土壤有机质、活性有机质及其CMI的剖面分布趋势相似,林地土壤有机质、活性有机质及其CMI主要富集在0~10 cm土层,果园主要富集在0~20 cm土层,而坡耕地和撂荒地从上而下的降低则比较均匀.在0~60 cm土壤深度内的土壤有机质以及3种活性有机质平均含量均为撂荒地>林地>果园>坡耕地,将林地转变为果园和坡耕地后,有机质含量分别降低了21.56%(P>0.05)和55.90%(P<0.05),将坡耕地闲置撂荒后,有机质、低、中、高活性有机质含量分别升高了238.86%(P<0.05)、144.2%(P<0.05)、153.3%(P<0.05)和242.7%(P<0.05).方差分析发现3种土壤ER在不同土地利用方式之间并无明显差异,表明土壤ER对土地利用变化并不敏感.不同土地利用方式下3种活性有机质CMI均为撂荒地最高,林地次之,果园和坡耕地最低,表明林地开垦导致土壤碳截存降低,土壤向着质量退化的方向发展,而坡耕地撂荒则增强了土壤的碳汇功能,土壤质量向着良性方向发展.3种活性有机质与全氮、速效磷和速效钾呈极显著正相关关系,与土壤容重呈极显著负相关关系,表明活性有机质与土壤理化性质关系密切,是反映土壤养分和衡量土壤质量的重要指标.  相似文献   

9.
Conservation tillage (CnT) management practices are known to increase levels of soil organic matter (SOM) in southeastern Coastal Plain soils. Plant residues in CnT systems accumulate at the surface and, with time, will form a layer enriched in SOM. The authors hypothesize that herbicide sorption will be highest in this SOM-enriched zone of CnT systems when compared to sorption at a similar depth in conventional tillage (CT) systems. The objective was to characterize the impact of two different tillage systems, CnT and CT, on sorption of atrazine [6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine] and fluometuron [N,N-dimethyl-N′-3-(trifluoromethyl)phenyl urea] in plots of Norfolk loamy sand (fine-loamy, siliceous thermic Typic Kandiudult). The plots have been under CnT and CT management for 18 yrs. Bulk (0–15 cm) and five equal incremental soil samples to a 15 cm depth were collected from 10 CnT and 10 CT plots, and the atrazine (ATR) and fluometuron (FLMT) sorption coefficients (Kd) were measured using batch equilibration. Significantly higher herbicide Kd values occurred in the CnT 0–3 cm samples, indicating that the highest amount of herbicide sorption occurred in the top few cm of soil. This corresponded to the stratified soil organic carbon (SOC) contents in topsoil of the CnT plots. In addition, analyses of covariance using SOC as the covariant to test for tillage effects indicated complex interactions among SOC, tillage, and depth. Those results confirm that tillage and soil depth will affect SOC contents of a Norfolk loamy sand, which correspondly will influence the magnitude of ATR and FLMT sorption.  相似文献   

10.
We measured denitrification at 15 sites during 1 year in a agricultural catchment in Brittany, France. Our objective was to assess the relative importance of heterotrophic denitrification on the fate of excess nitrogen at the catchment scale, and to quantify the relative importance of riparian areas on the N2O emissions. Using the C2H2 inhibition technique, denitrification rate on soil core and denitrifying enzyme activity (DEA) were each determined, for samples taken from two soil layers: 0–20 and 20–40 cm. Denitrification rates, ranging from 0 to 417 mg N m−2 d−1, were significantly higher in riparian areas than for hillslopes (median of 24.87 against 10.38 mg N m−2 d−1). However, since denitrification rates are significant in the hillslope and given that hillslope surface area is much greater (79% of catchment surface), this domain could be responsible for half of the overall denitrified nitrogen (N). Also, the 20–40 cm deep soil layer was found to account for more than 46% of the denitrification. The DEA indicates the potential for denitrifying activity by the soil under non-limiting conditions, measured values ranged from 76.48 to 530.63 ng N g−1 dry soil h−1. The ratio N2O/(N2O + N2) was about 60% with no clear spatial or temporal trends. Soil moisture appeared to be the main limiting factor for denitrification at the field scale. The results suggest that, for this catchment, denitrification is a major route for nitrogen removal, but a significant proportion of this removal occurs as N2O.  相似文献   

11.
In order to increase the water and fertilizer use efficiency and decrease the losses of water and fertilizer solutes (N and P), it is necessary to assess the influence of level of fertilization and irrigation schedule on movement and balance of water and fertilizers in the root zone. With this goal, the reported study was undertaken to determine the effect of fertilization and irrigation schedule on water movement and fertilizer solute transport in wheat crop field in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop of cultivar Sonalika (Triticum aestivum L.) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment consisted of four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments were: I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments during the experiment were: F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1; F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. The results of the investigation revealed that low volume high frequency irrigation results in higher deep percolation losses than the low frequency high volume irrigation with different levels of fertilization for wheat crop in coarse lateritic soil, whereas different levels of fertilization did not significantly affect soil water balance of the wheat crop root zone during all the irrigation schedules. Level of fertilization and irrigation schedule had significant effect on nitrogen leaching loss whereas irrigation schedules had no significant effect on nitrogen uptake under different levels of fertilization. On the other hand, the leaching loss of phosphorus was not significantly influenced by the irrigation schedule and level of fertilization of wheat crop. This indicated that PO4–P leaching loss was very low in the soil solution as compared to nitrogen due to fixation of phosphorus in soils. From the observed data of nitrogen and phosphorus use efficiency, it was revealed that irrigation schedule with 40% maximum allowable depletion of available soil water with F2 fertilizer treatment (N:P2O5:K2O as 80:40:40 kg ha−1) was the threshold limit for wheat crop with respect to nitrogen and phosphorus use, crop yield and environmental pollution.  相似文献   

12.
李睿  江长胜  郝庆菊 《环境科学》2015,36(9):3429-3437
于缙云山阳坡同一海拔高度处选择了亚热带常绿阔叶林(简称林地)、荒地、坡耕地和果园4种土地利用方式,在0~60 cm的土壤深度内每隔10 cm采集一个土壤样品,测定大团聚体(2 mm)、中间团聚体(0.25~2 mm)、微团聚体(0.053~0.25 mm)以及粉+黏团聚体(0.053 mm)这4种粒径团聚体内的土壤活性有机碳(labile organic carbon,LOC)的含量,分析缙云山不同土地利用方式对团聚体LOC的影响.结果表明,各粒径团聚体中LOC含量均随土壤深度的增加而显著降低,呈现出明显的垂直递减性;在0~60 cm土壤深度的各土层上,基本上均表现为林地和撂荒地各粒径团聚体中LOC含量高于坡耕地和果园.采用土壤等质量方法计算LOC储量,显示大团聚体LOC储量为林地(3.68 Mg·hm-2)撂荒地(1.73 Mg·hm-2)果园(1.43 Mg·hm-2)坡耕地(0.54 Mg·hm-2);中间和微团聚体LOC储量为撂荒地(7.77 Mg·hm-2和5.01 Mg·hm-2)林地(4.96 Mg·hm-2和2.71 Mg·hm-2)果园(3.55 Mg·hm-2和2.10 Mg·hm-2)坡耕地(1.68 Mg·hm-2和1.35 Mg·hm-2);粉+黏团聚体LOC储量为撂荒地(4.32 Mg·hm-2)果园(4.00 Mg·hm-2)林地(3.22 Mg·hm-2)坡耕地(2.37Mg·hm-2).除粉+黏团聚体LOC储量略低于果园外,林地和撂荒地其他粒径团聚体LOC储量均高于果园和坡耕地,表明林地开垦为果园和坡耕地会导致LOC的降低,而坡耕地撂荒则会促进LOC的增加.林地和荒地LOC主要分布在中间团聚体,而果园和坡耕地则为粉+黏团聚体内LOC储量最高,表明在土地利用的转变过程中,粒径较大的团聚体更容易积累或损失LOC.4种土地方式下各粒径团聚体中LOC分配比例随土壤深度的增加而降低,果园和坡耕地各粒径团聚体内LOC分配比例略高于林地和撂荒地,表明林地和撂荒地土壤有机碳(soil organic carbon,SOC)性质更稳定,更有利于碳在土壤中的留存,从而减少SOC矿化分解向大气的释放.相关分析表明,土壤团聚体LOC含量与土壤团聚体总有机碳含量呈极显著正相关关系,表明团聚体LOC可以作为衡量西南地区山地土壤团聚体有机碳动态的一个敏感性指标.  相似文献   

13.
为探讨互花米草入侵对滨海湿地土壤磷循环的影响,基于时空互易原则,选择胶州湾湿地互花米草区(SA区)和光滩区(MF区)为研究靶区,分析了互花米草入侵后湿地土壤中总磷(TP)、无机磷(IP)及其组分含量的差异性以及影响因素.结果表明,互花米草入侵后湿地土壤中TP (472.70 mg ·kg-1)和IP (239.00 mg ·kg-1)平均含量明显高于入侵前光滩区TP (386.19 mg ·kg-1)和IP (212.68 mg ·kg-1)含量,增幅分别为22.40%和12.38%.研究区无机磷组分以钙磷(Ca-P)和铁磷(Fe-P)为主,分别占IP的45%~61%和31%~49%.互花米草入侵后,10~30 cm层土壤Ca-P含量显著降低(P<0.05),7月尤为明显;Fe-P含量显著增加(P<0.05),0~40 cm土壤层含量高于40~60 cm层(P<0.05),并且7月在10~40 cm土壤表现出明显富集现象.通过结构方程模型发现互花米草入侵后有机质(OM)对TP和Fe-P有显著正向影响(P<0.01),标准化路径系数分别为0.775和0.724.入侵后Fe-P对Ca-P有显著负效应(P<0.01),标准化路径系数为-0.435.结果发现互花米草入侵总体增加了湿地土壤磷含量,同时促进了Ca-P向Fe-P转化,提高了湿地磷的生物利用性.  相似文献   

14.
张文娟  廖洪凯  龙健  李娟  刘灵飞 《环境科学》2015,36(3):1053-1059
以贵州西南部典型石漠化治理示范区内5年、17年、30年生花椒林和乔木林(约60年)土壤为对象,采用室内模拟培养方法研究了0~15、15~30、30~50 cm这3个剖面土壤有机碳的矿化特征及活性有机碳的含量变化.结果表明,30年生花椒林土壤有机碳累计矿化量在各层土壤中均高于对应的乔木林土壤,而5年、17年生花椒林地各层土壤则均低于对应的乔木林土壤,3种花椒林土壤有机碳累计矿化量分配比在各层均高于对应的乔木林土壤.长期种植花椒增加了土壤有机碳的矿化量,降低了土壤有机碳的稳定性.乔木林土壤易氧化有机碳和颗粒有机碳在各层均显著高于对应的3种花椒林土壤(P0.05).随花椒种植年限增加,土壤易氧化有机碳和颗粒有机碳含量在0~15 cm和15~30 cm土层先增加后减少,在30~50cm土层则为先减少后增加.短期花椒种植有利于土壤活性有机碳的增加,长期则降低了0~15 cm和15~30 cm层土壤活性有机碳含量,花椒种植有利于深层(30~50 cm)土壤活性有机碳的积累.  相似文献   

15.
Increasing evidences have shown that dissolved organic components are responsible for the significant C and N exports from terrestrial ecosystems to the surrounding aquatic ecosystems and very sensitive to CO2 enrichment. However, there is still a lack of direct evidence about CO2-led effects on these components at the ecosystem scale, especially in wetlands. We, therefore, simultaneously investigated the contents of dissolved organic carbon (DOC) and dissolved nitrogen (DN) in the surface water and soil layer in a paddy field under FACE facility in Eastern China. Elevated CO2 significantly increased the contents of DOC and DN in the surface water by 18.0% and 14.3% on average. Elevated CO2 also increased DOC content in the soil, but decreased DN content. The contents of DOC and DN in the soil–water interface of 0–1 cm soil layer were on average 22.4% and 47.5% higher than in the 5–15 cm soil layer. Besides, significant higher DOC and DN contents existed in the soil porewater than in the surface water. Due to multiple drainage regime and rainstorm-induced runoffs in rice cropping regions, CO2-led DOC and DN increments in the surface water may increase C and N exports from paddies to the surrounding aquatic ecosystems under future climate patterns.  相似文献   

16.
土地利用方式对土壤有机质及其碳库管理指数的影响   总被引:21,自引:2,他引:19       下载免费PDF全文
采用野外调查和室内分析的方式对子午岭不同土地利用方式下,土壤有机质、3种活性有机质及其碳库管理指数(CMI)进行了研究,结果表明,土壤有机质、3种活性土壤有机质含量均随土层的加深逐渐降低,在土壤剖面基本表现为林地、撂荒未翻耕地>撂荒翻耕地>农用地.同一土层,3种土壤活性有机质含量及其有效率表现为低活性有机质>中活性有机质>高活性有机质.不同利用方式下,活性有机质有效率随有机质活性增强,呈现撂荒未翻耕地>林地>撂荒翻耕地>农用地的趋势.不同利用方式之间的CMI的差异随有机质活性的增强而增大,且影响深度也逐渐加深.在0~30cm土层内,林地3种活性有机质的CMI高于撂荒翻耕地和农用地;而在30cm之下土层,3种利用方式低活性有机质的CMI相差不大,但中活性有机质和高活性有机质的CMI表现为林地>撂荒翻耕地>农用地.3种活性土壤有机质与其他生物化学性质之间均表现为显著或极显著相关关系,表明活性有机质可以指示土地利用方式对土壤有机质和CMI的影响.  相似文献   

17.
依据田间连续7 a秸秆还田定位试验,探讨秸秆还田配施化肥对巢湖地区农田土壤剖面(0~20、20~50和50~80 cm)的土壤总有机碳(TOC)、可溶性有机碳(DOC)、颗粒有机碳(POC)、活性有机碳(LOC)、碳库管理指数(CPMI)和作物产量的影响.试验设置无秸秆还田+无施肥(CK)、常规施肥(F)、秸秆还田+常规施肥(SF1)和秸秆还田+80%常规施肥(SF2)这4个处理,分析不同土层土壤总有机碳和组分含量、CPMI和油菜-水稻产量的变化规律.结果表明,以CK为参考,常规施肥和秸秆还田配施化肥均提高了垂直剖面土壤总有机碳和组分的含量,且不同土层土壤总有机碳和组分的含量随土层深度增加而逐渐降低.在0~20 cm土层,与F处理相比,SF1和SF2处理显著提高TOC、DOC、POC和LOC的含量,增幅分别为:14.23%~28.97%、7.86%~27.01%、16.46%~24.24%和5.89%~6.64%(P<0.05);在20~50 cm土层,SF1较F处理的TOC和LOC的含量显著增加9.43%和8.34%(P<0.05),SF2较F处理的DOC和POC的含量显著增加17.51%和65.83%(P<0.05);在50~80 cm土层,各处理间土壤总有机碳和组分的含量均无显著差异.秸秆还田配施化肥对土壤碳库管理指数影响显著,SF1较F处理显著提高0~50 cm土层的CPMI,而F处理的CPMI在50~80 cm土层最大,但各处理间均无显著差异.秸秆还田配施化肥对作物产量具有显著提升作用,且SF1处理的产量最高,SF1较F处理的水稻、油菜和周年产量分别显著增加6.19%、7.67%和6.54%(P<0.05).总的来说,稻-油轮作模式下秸秆还田配施化肥对提高巢湖地区土壤碳库、土壤肥力和作物产量具有重要意义.  相似文献   

18.
An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) > dissolved organic carbon (7.5%) > labile oxidable carbon (6.6%) > carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.  相似文献   

19.
Urea is an important source of ammonia (NH3) emissions to the atmosphere from agricultural soils. Abatement strategies are necessary in order to achieve NH3 emission targets by reducing those emissions. In this context, a field experiment was carried out on a sunflower crop in spring 2006 with the aim of evaluating the effect of the N-(n-butyl) thiophosphoric triamide (NBPT) in the mitigation of volatilized NH3 from a urea-fertilised soil. Ammonia emission was quantified, using the integrated horizontal flux (IHF) method, following application of urea with and without the urease inhibitor NBPT. Urea and a mixture of urea and NBPT (0.14%, w/w) were surface-applied at a rate of 170 kg N ha−1 to circular plots (diameter 40 m). The soil was irrigated with 10 mm of water just after the application of urea to dissolve and incorporate it into the upper layer of soil. Over the duration of the measurement period (36 days) three peaks of NH3 were observed. The first peak was associated with hydrolysis of urea after irrigation and the others with the increase of ammonia in soil solution after changes in atmospheric variables such as wind speed and rainfall. The total NH3 emission during the whole experiment was 17.3 ± 0.5 kg NH3–N ha−1 in the case of urea treated soils and 10.0 ± 2.2 kg NH3–N ha−1 where NBPT was included with the urea (10.1 and 5.9%, respectively, of the applied urea–N). The lower NH3 emissions from plots fertilised with urea + NBPT, compared with urea alone, were associated with a reduction in urease activity during the first 9 days after inhibitor application. This reduction in enzymatic activity promoted a decrease in the exchangeable NH4+ pool.  相似文献   

20.
The objective of this experiment was to determine the effects of earthworms on soil N pools and plant growth in soybean and maize agroecosystems. The species and number of individuals in earthworm communities were manipulated in plot-scale field enclosures (2.4 m × 1.2 m) by first reducing earthworm populations within enclosures with carbaryl pesticide, and then adding earthworm treatments to the enclosures. Soybean was grown in the enclosures in the first year and stover maize in the second year.The success of earthworm manipulations in field enclosures was affected by climate conditions and available food resources. The endogeic earthworm species Aporrectodea caliginosa was dominant in all enclosures, while introduced anecic Lumbricus terrestris earthworms had poor survival. In the first season, when climate conditions were favourable for earthworm survival and growth, there was a significant (P < 0.05) linear increase in soil mineral-N and microbial biomass N concentrations in the 0–15 cm depth of enclosures with more earthworms. Similarly, soybean grain and grain-N yield was significantly (P < 0.05) greater in enclosures with the largest earthworm populations than the control which had no earthworms added. In the second season, when climate conditions were less favourable, there was no effect of earthworms on soil N pools or maize plants, probably due to poor survival of introduced earthworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号