首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
It is significant to arrange suitable design and placement of best management practices (BMPs) for reaching the aim that can not only satisfy environmental quality standards, but also decrease the total cost of BMPs. This study applied WinVAST model to predict watershed responses. The objective of this work was to discuss both the economic costs and benefits of BMPs and the control efficiency of discharge and pollutant exports, and to create some suitable standards for the optimal BMPs placement strategies. It is significant to find an optimal number and location of BMPs. In the case study herein, the number of BMPs including a detention pond and a grassy swale would be better to be given by four. The number of BMPs should also be determined by the environmental standards. Moreover, the result shows that the optimal location of BMPs placement is in the downstream area near the outlet and on the mainstream of the catchment. When the BMPs are set in these regions, it cannot only reduce the peak flow and peak pollutant exports, but also have slow time to peak watershed responses.  相似文献   

2.
It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.  相似文献   

3.
In Taiwan, nonpoint source (NPS) pollution is one of the major causes of the impairment of surface waters. I-Liao Creek, located in southern Taiwan, flows approximately 90 km and drains toward the Kaoping River. Field investigation results indicate that NPS pollution from agricultural activities is one of the main water pollution sources in the I-Liao Creek Basin. Assessing the potential of NPS pollution to assist in the planning of best management practice (BMP) is significant for improving pollution prevention and control in the I-Liao Creek Basin. In this study, land use identification in the I-Liao Creek Basin was performed by properly integrating the skills of geographic information system (GIS) and global positioning system (GPS). In this analysis, 35 types of land use patterns in the watershed area of the basin are classified with the aid of Erdas Imagine process system and ArcView GIS system. Results indicate that betel palm farms, orchard farms, and tea gardens dominate the farmland areas in the basin, and are scattered around on both sides of the river corridor. An integrated watershed management model (IWMM) was applied for simulating the water quality and evaluating NPS pollutant loads to the I-Liao Creek. The model was calibrated and verified with collected water quality and soil data, and was used to investigate potential NPS pollution management plans. Simulated results indicate that NPS pollution has significant contributions to the nutrient loads to the I-Liao Creek during the wet season. Results also reveal that NPS pollution plays an important role in the deterioration of downstream water quality and caused significant increase in nutrient loads into the basin's water bodies. Simulated results show that source control, land use management, and grassy buffer strip are applicable and feasible BMPs for NPS nutrient loads reduction. GIS system is an important method for land use identification and waste load estimation in the basin. Linking the information of land utilization with the NPS pollution simulation model may further provide essential information of potential NPS pollution for all subregions in the river basin. Results and experience obtained from this study will be helpful in designing the watershed management and NPS pollution control strategies for other similar river basins.  相似文献   

4.
Negligence to consider the spatial variability of rainfall could result in serious errors in model outputs. The objective of this study was to examine the uncertainty of both runoff and pollutant transport predictions due to the input errors of rainfall. This study used synthetic data to represent the “true” rainfall pattern, instead of interpolated precipitation. It was conducted on a synthetic case area having a total area of 20 km2 with ten subbasins. Each subbasin has one rainfall gauge with synthetic precipitation records. Six rainfall storms with varied spatial distribution were generated. The average rainfall was obtained from all of the ten gauges by the arithmetic average method. The input errors of rainfall were induced by the difference between the actual rainfall pattern and estimated average rainfall. The results show that spatial variability of rainfall can cause uncertainty in modeling outputs of hydrologic, which would be transport to pollutant export predictions, when uniformity of rainfall is assumed. Since rainfall is essential information for predicting watershed responses, it is important to consider the properties of rainfall, particularly spatial rainfall variability, in the application of hydrologic and water quality models.  相似文献   

5.
针对清河流域三级水生态功能分区功能定位和水质保护目标,按照"分类、分区、分级、分期"理念,应用流域水质目标管理技术方法,研究清河流域控制单元污染负荷核定、水环境容量计算与分配、污染负荷削减、污染物总量控制等关键技术应用示范,完善流域水质目标管理技术,为清河流域水环境管理提供科技支撑。  相似文献   

6.
Flood routing is a significant calculation for predicting watershed responses, involving discharge and pollutant exports. The computation of flow routing is highly relative to the relationship between downstream and upstream subbasins. A watershed could always be divided into several subbasins based on its topography and stream distribution. How detailed of the delineation of the stream distribution in a watershed would influence the modeling accuracy of flow routing and the prediction of watershed responses. The objective of this work was to discuss the effect of watershed delineation on runoff and pollutant transport predictions. When the number of divided subbasins increases, the stream distribution could be delineated more clearly. The case area was usually regarded as two subbasins only. In the present study, the case area was divided into 43, 25, 15 and 9 subbasins respectively. If the modeling result under 43 subdivisions is assumed to be the actual situation, the relative error of runoff simulation due to the simplified delineation of stream distribution is only around 25% in two subdivisions. However, the relative error of suspended solids (SS), total nitrogen (TN) and orthophosphate (Orth-P) simulation can reach 85%, 71 and 70% in two subdivisions respectively. The uncertainties or errors induced by too much simplification of watershed delineation could be carried over and amplified to the pollutant transport process and the modeling results of pollutant exports.  相似文献   

7.
根据2021年5月—2022年4月合溪新港河流水量、水质(TN和TP)的同步监测数据,利用通量模型核算了合溪新港污染物(TN和TP)通量。通过测算合溪新港TN、TP通量与断面降雨强度、水质的响应关系,分析了该区域的污染类型及特点,为后期水质污染调查及通量研究提供了新思路。结果表明:合溪新港流量与降雨量存在明显相关关系,在强降雨期(7—8月)水体流量最高,占监测周期总流量的57.77%;少雨期则流量最低,且会出现湖水倒灌现象(11—12月)。通过分析合溪新港TN、TP通量与流量、水质的相关关系,确定了该流域污染类型为点源污染及农业面源污染共存的混合型污染,且在高强度降雨时污染物负荷量较大。综上,可针对农业面源污染对该流域治理提出相关对策,建立农业面源污染防治体系,以有效降低TN和TP污染物的入湖通量,减少太湖TN和TP污染物负荷量。  相似文献   

8.
Lake Tahoe is a large sub alpine lake located in the Sierra Nevada Range in the states of California and Nevada. The Lake Tahoe watershed is relatively small (800 km(20) and is made up of soils with a very low nutrient content and when combined with the Lake's enormous volume (156 km(3)) produces water of unparalleled clarity. However, urbanization around the Lake during the past 50 yr has greatly increased nutrient flux into the Lake resulting in increased algae production and rapidly declining water clarity. Lake transition from nitrogen limiting to phosphorous limiting during the last 30 yr suggests the onset of cultural eutrophication of Lake Tahoe. Protecting Lake Tahoe's water quality has become a major public concern and much time, effort, and money has been, and will be, spent on this undertaking. The effectiveness of remedial actions is the subject of some debate. Local regulatory agencies have mandated implementation of best management practices (BMPs) to mitigate the effects of development, sometimes at great additional expense for developers and homeowners who question their effectiveness. Conclusive studies on the BMP effectiveness are also expensive and can be difficult to accomplish such that very few such studies have been completed. However, several project evaluations have been completed and more are underway. Such study usually demonstrates support of the project's effectiveness in decreasing nutrient flux to Lake Tahoe. Here, we review the existing state of knowledge of nutrient loading to the Lake and to highlight the need for further evaluative investigations of BMPs in order to improve their performance in present and future regulatory actions.  相似文献   

9.
Half of the original Everglades system has been lost to drainage and development. What remains is included within the boundaries of the Everglades Protection Area (EPA), comprised of three Water Conservation Areas (WCAs) and Everglades National Park (Park). Inflows to the EPA contain elevated nutrient concentrations. Best management practices (BMPs) were implemented and six large wetlands called stormwater treatment areas (STAs) were constructed to improve water quality. We analyzed water quality in the WCAs and Park and performed an economic analysis of the STAs to remove nutrients from EPA inflows. In general, nutrient concentrations in all WCAs were higher during the pre-STA period than after the STAs became operational. In WCA2 and the Park, total phosphorus (TP) trends showed more negative slopes prior, as compared to after, the STAs became operational. These results suggest that BMPs lead to large initial decreases in nutrient export resulting in improved downstream water quality. A preliminary economic analysis shows that operation and management of the STAs are complicated and cost intensive. Comparing the cost of phosphorus (P) removal from water entering the EPA using BMPs and STAs may not currently be viable. BMPs prevent P from being applied to, or leaving from agricultural fields while STAs remove P from stormwater. We expect nutrient concentrations in water flowing into and out of the STAs to decline as both BMPs and STAs become more effective. We suggest an economic analysis of BMPs, STAs, and other potential approaches to determine the most cost-effective methods to reduce nutrient concentrations and related stressors affecting the Everglades.  相似文献   

10.
Relationship between landscape characteristics and surface water quality   总被引:2,自引:0,他引:2  
The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon's natural habitat. Due to the agriculture behavior and mankind's activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.  相似文献   

11.
Road-deposited sediment (RDS) is an important environmental medium for impacting the characteristics of pollutants in stormwater runoff; it is of critical importance to investigate the water quality of urban environments. The paper develops a rainfall simulator as an important research tool to ensure homogeneity and reduce the large number of variables that are usually inherent to urban water quality research. The rainfall simulator was used to experiment runoff samples from typical residential and traffic areas in the Zhenjiang. The data show that land use is one of the major factors contributing to the difference in the pollutants concentration in the RDS. The maximum mean EMC for TN, TDN, TP, and TDP at residential area was 5.52, 3.07, 1.65, and 0.36 mg/L, respectively. The intense traffic area displayed the highest metal concentrations. Concentrations of runoff pollutants varied greatly with land use and storm characteristics. The correlation of pollutant concentrations with runoff times was another predominant phenomenon. Peaks in pollutants concentration occurred at 1 and 10 min during the whole storm event. A concentration peak that correlates with a peak in runoff flowrate correlates with rainfall intensity. The pollutant loadings (kilograms per hectare) in the Zhenjiang were 11.39 and 55.28 for COD, 8.42 and 57.48 for SS, 0.11 and 0.88 for TN, 0.02 and 0.14 for TP, 0.02 and 0.09 for Zn, and 0.01 and 0.04 for Pb. The higher rainfall contribute to the higher pollutant loading at the residential and intense traffic areas, as a result of the pollutant loadings direct dependence on rainfall intensity. The results confirmed that the rainfall simulator is a reliable tool for urban water quality research and can be used to simulate pollutant wash-off. These findings provide invaluable information for the development of appropriate management strategies to decrease nonpoint source contamination loading to the water environment in urban areas.  相似文献   

12.
The amount of pollution from nonpoint sources flowing in the streams of the Wujiang River watershed in Guizhou Province, SW China, is estimated by a geographic information system (GIS)-based method using rainfall, surface runoff and land use data. A grid of cells of 100 m in size is laid over the landscape. For each cell, mean annual surface runoff is estimated from rainfall and percent land use, and expected pollutant concentration is estimated from land use. The product of surface runoff and concentration gives expected pollutant loading from that cell. These loadings are accumulated going downstream to give the expected annual pollutant loadings in streams and rivers. By dividing these accumulated loadings by the similarly accumulated mean annual surface runoff, the expected pollutant concentration from nonpoint sources is determined for each location in a stream or river. Observed pollutant concentrations in the watershed are averaged at each sample point and compared to the expected concentrations at the same locations determined from the grid cell model. In general, annual nonpoint source nutrient loadings in the Wujiang River watershed are seen to be predominantly from the agricultural and meadow areas. The total annual loadings through the outlet of the watershed are 40,309 and 2,607 tons for total nitrogen (TN) and total phosphorus (TP), respectively.  相似文献   

13.
This study develops a theoretical tool for investigating the impact on cost effective coastal water management from explicit treatment of: coastal pollutant transports, stochastic pollutant transports in the catchment areas, and wetlands as a pollutant abatement option. It is applied to a relatively well investigated estuary, Himmerfjärden, south of the Swedish capital, Stockholm. The theoretical results indicate that all three factors influence cost effective allocation of measures and associated design of economic instruments. The consideration of stochastic pollutant transports will increase costs, but the direction of influence of the other two factors cannot be determined without empirical support. The application to nitrogen transport in Himmerfjärden shows that, for target nitrogen reductions given in terms of a percentage of pre-abatement loads, the inclusion of coastal transports in the cost calculations lowers the estimated total costs for targets interpreted in terms of nitrogen loads to the marine water. The alternative investigated target interpretation was in terms of nitrogen loads to coastal waters. Depending on the ability of wetlands to abate nitrogen and to change the variance in pollutant load to the coastal recipients, costs are either increased or decreased as compared to when wetlands are excluded as nitrogen abatement options.  相似文献   

14.
Water quality has degraded dramatically in Wen-Rui Tang River watershed, Zhejiang, China, especially due to rapid economic development since 1995. This paper aims to assess spatial and temporal variations of the main pollutants (NH??-N, TN, BOD(5), COD(Mn), DO) of water quality in Wen-Rui Tang River watershed, using the geographic information system, cluster analysis (CA) and principal component analysis (PCA). Results showed that concentrations of BOD(5), COD(Mn), NH??-N, and TN were significantly higher in tertiary rivers than in primary and secondary rivers. From April 2006 to March 2007, the concentrations of NH? ?-N (2.25-57.9 mg/L) and TN (3.78-70.4 mg/L) in all samples exceeded Type V national water quality standards (≥2 mg/L), while 5.3% of all COD(Mn) (1.83-27.5 mg/L) and 33.6% of all BOD(5) (0.34-50.4 mg/L) samples exceeded Type V national water quality standards (COD(Mn)?≥ 15 mg/L, BOD(5)?≥ 10 mg/L). Monthly changes of pollutant concentrations did not show a clear pattern, but correlation analysis indicated that NH??-N and TN in tertiary rivers had a significant negative correlation with 5-day cumulative rainfall and monthly rainfall, while there were no significant correlations in primary and secondary rivers. The results of CA and spatial analysis showed that the northern part of Wen-Rui Tang River watershed was the most seriously polluted. This region is characterized by the high population density and industrial and commercial activities. The PCA and spatial analysis indicated that the degraded water quality is caused by anthropogenic activities and poor wastewater management.  相似文献   

15.
Sydney estuary (Australia) catchment is substantially urbanised (80%) and small (480 km2) with a large population (2.5 million) and is therefore highly sensitive to anthropogenic influence. The Model for Urban Stormwater Improvement Conceptualisation used to model nutrient export to the estuary determined an average annual load of 475 t total nitrogen, 63.5 t total phosphorus and 343,000 t total suspended solids. Model verification included intense, short-term water sampling and analysis undertaken in the current project and use of published data spanning 10 years. Under high-rainfall conditions (>50 mm day???1), the estuary becomes stratified and nutrients are either removed from the estuary directly in a plume or indirectly by advective/dispersive remobilisation. The majority of the nutrient load is delivered during moderate rainfall (5–50 mm day???1) conditions and accumulates close to discharge points and remains in the estuary. To significantly reduce nutrient load, management strategies should aim to minimise low and moderate rainfall pollutant loads.  相似文献   

16.
Research on water quality degradation caused by point and diffuse source pollution plays an important role in protecting the environment sustainably. Implementation of Best Management Practices (BMPs) is a conventional approach for controlling and mitigating pollution from diffuse sources. The objectives of this study were to assess the long-term impact of point and diffuse source pollution on sediment and nutrient load in a lowland catchment using the ecohydrological model Soil and Water Assessment Tool (SWAT) and to evaluate the cost and effectiveness of BMPs for water quality improvement in the entire catchment. The study area, Kielstau catchment, is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants. Diffuse entries as well as punctual entries from the wastewater treatment plants are implemented in the model set-up. Results from model simulations indicated that the SWAT model performed satisfactorily in simulating flow, sediment, and nutrient load in a daily time step. Two approaches to structural and nonstructural BMPs have been recommended in relation to cost and effectiveness of BMPs in this study. These BMPs include extensive land use management, grazing management practice, field buffer strip, and nutrient management plan. The results showed that BMPs would reduce fairly the average annual load for nitrate and total nitrogen by 8.6% to 20.5%. However, the implementation of BMPs does not have much impact on reduction in the average annual load of sediment and total phosphorus at the main catchment outlet. The results obtained by implementing those BMPs ranged from 0.8% to 4.9% and from 1.1% to 5.3% for sediment and total phosphorus load reduction, respectively. This study also reveals that reduction only in one type of BMP did not achieve the target value for water quality according to the European Water Framework Directive. The combination of BMPs improved considerably water quality in the Kielstau catchment, achieving a 53.9% and a 46.7% load reduction in nitrate and total nitrogen load, respectively, with annual implementation cost of 93,000 Euro.  相似文献   

17.
江苏省流域水环境综合管理监控预警体系构建   总被引:1,自引:0,他引:1       下载免费PDF全文
以水生态功能分区为基础,构建江苏省流域水环境综合管理监控预警体系,包括基于水环境容量的污染物总量控制体系、基于主要水污染物的总量减排监控体系、基于水生态系统安全的监测与评估体系和基于水环境风险的监控预警体系,使江苏省水环境管理从单一的水质管理向流域综合管理转变,从单纯的化学污染控制向水生态系统保护转变,从目标总量管理向...  相似文献   

18.
A vulnerability analysis in the Fei-tsui reservoir watershed in Taiwan   总被引:5,自引:0,他引:5  
The vulnerability analysis method has been widely used in many environmental fields. In recent years, the tool has succeeded in comprehensive assessment of environmental problems. This study applied the vulnerability and resilience analysis method on watershed conservation and grasped the environmental change capacity that watershed could bear. The Fei-tsui reservoir watershed in Northern Taiwan provided the setting for the case study reported herein. This study considered both internal and external effect factors, including watershed vulnerability, rainfall energy and the distances between the outlet and subbasins, and developed a new index, WP, for the priority restraints strategies on the land-use activities. The land-use restraint index can be a significant criterion for watershed protection and management strategies.  相似文献   

19.
Monitoring programs in the agriculturally intense San Joaquin River Valley of California have periodically found organophosphate (OP) insecticide concentrations, predominantly chlorpyrifos, diazinon and methidathion, at levels high enough to cause mortality for the aquatic invertebrate Ceriodaphnia dubia. These detections are likely the result of off-site movement from treated fields. However, the relative significance and magnitude of off-site transport pathways cannot be readily deduced from monitoring data alone. Therefore, a comprehensive modeling system has been constructed to estimate temporal and spatial pesticide source magnitudes and to follow the pesticide dissipation pathways once in surface water. The USEPA models HSPF and PRZM3 were used for the hydrology and non-point source predictions, respectively. Spray drift was accounted for using the mechanistic model AgDrift. The Orestimba Creek Watershed in the San Joaquin Valley was characterized and used as a typical watershed for this region. Representative transport pathways were ranked and quantified, and numerical implementation of best management practices (BMPs) determined which practice may have the highest likelihood for reducing pesticide loadings. Approximately 85% of the predicted chlorpyrifos mass detected between May 1, 1996, and April 30, 1997 resulted from drift, with the largest contributions coming from walnut orchards immediately adjacent to Orestimba Creek. Various simulated drift mitigation measures suggest chlorpyrifos mass loadings can be decreased by over 90% depending upon the type of mitigation chosen. Imposed drift BMPs should be effective in reducing chlorpyrifos levels found in surface waters of the San Joaquin valley if the Orestimba creek watershed is considered representative of watersheds found in this area of California.  相似文献   

20.
Soil erosion is the most important reason of sedimentation load of water reservoirs in the world. In Pakistan, Mangla dam is one of the most important water reservoirs used for the production of electricity and for the supply of water for irrigation purposes. However, the capacity of Mangla dam reservoir has reduced by more than 20% since its construction. This study highlights the impact of rainfall on soil erosion and consequently on sedimentation deposition in Mangla dam reservoir. Sedimentation, annual rainfall, and normal rainfall data of 39 years were used in this study. Shuttle Radar Topographic Mission data were used to calculate the total drainage area of the Mangla watershed region. The sedimentation data of Mangla reservoir from 1967 to 2005 were retrieved from Water and Power Development Authority in Pakistan. The meteorological observatories in the Mangla watershed region are identified. Annual rainfall data from 1967 to 2005 for the meteorological observatories in the Mangla watershed regions were retrieved from Pakistan Meteorological Department (PMD). In addition, normal rainfall data for the years 1949 to 1978 and for the years 1979 to 2008 were also retrieved from PMD. The impact of annual rainfall is observed on sedimentation load in Mangla dam. The correlation coefficient between annual rainfall and sedimentation load is 0.94. This study shows that with an increase in rainfall, the soil erosion of the area increases which subsequently is responsible for the increase in the rate of sedimentation load in Mangla dam. This study further demonstrates that better soil management can reduce the sedimentation load in the Mangla reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号