首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
河北衡水湖湿地汞污染现状及生态风险评价   总被引:4,自引:3,他引:1  
以河北衡水湖湿地为调查对象,采用均匀设点采样分析,研究了衡水湖湿地大气、表层水和土壤/沉积物中总汞含量及其分布特征;同时采用地积累指数法和潜在生态风险指数法进行衡水湖湿地汞污染的生态风险评价.结果表明:衡水湖湿地大气总汞含量变化范围为1.0~5.0 ng·m~(-3),平均值为(2.9±0.85)ng·m~(-3);表层水总汞含量变化范围为0.010~0.57μg·L~(-1),平均值为(0.081±0.053)μg·L~(-1);土壤/沉积物总汞含量变化范围为0.001 0~0.058 mg·kg~(-1),平均值为(0.027±0.013)mg·kg~(-1).衡水湖湿地汞污染分布特征为,表层水总汞浓度岸边显著高于湖中(P0.05),湖中沉积物总汞浓度显著高于岸边土壤(P0.05);岸边大气总汞浓度与土壤总汞浓度呈正相关关系;高浓度汞富集总伴随剧烈的人为活动.地积累指数法表明衡水湖湿地地区汞污染为清洁程度;潜在生态风险指数法表明衡水湖湿地地区汞污染风险为低生态风险.  相似文献   

2.
三峡库区典型农田小流域土壤汞的空间分布特征   总被引:2,自引:1,他引:1  
为了解三峡库区农田流域汞污染现状及其生态风险,以三峡库区腹心地带的涪陵王家沟典型农田小流域为调查对象,基于Arc GIS地统计模块研究流域内不同土地利用类型(旱地、田地、林地和居民点)土壤汞(Hg)含量及其分布特征,并对其汞污染程度和生态风险进行评价.结果表明,流域内土壤Hg含量范围为9.47~94.57μg·kg-1,均值为(34.23±16.23)μg·kg-1,不同土地类型表层土壤Hg含量高低顺序为林地、田地、居民点、旱地;表层土壤出现明显汞累积现象,土壤Hg含量变化与土壤深度呈极显著负相关关系.地统计分析结果表明,流域土壤中的汞呈现出较弱的空间相关性,说明流域内土壤汞的空间分布主要受大气干湿沉降、植被覆盖和地形等自然因素影响,人为等外源干扰影响弱.流域土壤总体上虽未表现出明显的汞污染现象(污染指数为-0.08),但具有中度的汞潜在生态风险(生态风险指数为57),其中以林地较为严重.流域土壤汞承载量约为25.39 kg,旱地约占69%.  相似文献   

3.
分析了第二松花江中下游和松花江干流表层沉积物中总汞的含量水平和分布规律,同期采集了牡丹江、黑龙江沉积物作为对照,并采用地累积指数法以及潜在生态风险指数法,初步评价了松花江沉积物中汞的污染状况和潜在的生态风险.结果表明,松花江10个断面沉积物总汞含量范围0.029~1.317 mg·kg~(-1),均值0.183 mg·kg~(-1).第二松花江3个典型断面沉积物总汞含量均显著高于松花江干流的7个典型断面(P0.05).地累积指数(Igeo)及潜在生态风险指数(Er)表明第二松花江3个典型断面沉积物汞污染程度为偏中度至重度污染,存在高度生态风险;松花江干流7个典型断面为轻度污染,具有较高生态风险.近10年松花江沉积物汞含量变化及空间分布结果显示,现阶段第二松花江沉积物汞含量有所下降,但松花江干流个别江段沉积物汞含量有所上升,应引起重视.  相似文献   

4.
典型城市河流表层沉积物中汞污染特征与生态风险   总被引:2,自引:0,他引:2  
以北京市凉水河为研究对象,研究了典型城市河流表层沉积物中汞污染特征与生态风险.采用王水水浴消解法和BCR三步提取法分析沉积物中汞总量及其赋存形态特征,并利用潜在生态风险指数法和风险评估指数法评价汞的生态风险.结果表明,凉水河表层沉积物中总汞含量范围是0.018~3.48 mg·kg~(-1),平均值是0.974 mg·kg~(-1),多数样点高于北京市土壤背景值;表层沉积物中汞主要以残渣态(B4态)存在,平均含量为0.841 mg·kg~(-1),各形态汞所占比例顺序为:残渣态(B4态)可氧化态(B3态)可还原态(B2态)弱酸可溶解态(B1态),其中生物有效态汞占总汞的比例为23.21%.基于汞总量的潜在生态风险评价可知,凉水河各个河段表层沉积物中汞的潜在生态风险程度都处于很高水平(Ei平均值为565);但基于汞形态的生态风险评价可知,汞的生态风险都处于较低水平(B1所占比例平均值为4.80%).  相似文献   

5.
采用快速溶剂萃取(ASE)、凝胶渗透色谱净化(GPC)协同高效液相色谱(HPLC)检测方法,分析贵州省典型铅锌冶炼区赫章县41个表层农田土壤样品中16种优控多环芳烃(PAHs)的含量水平,并对其污染特征、来源和生态风险进行了分析.结果表明:典型铅锌冶炼区妈姑镇农田土壤∑PAHs的含量范围为196~11592μg·kg~(-1),算术均值和中位值分别为1500μg·kg~(-1)和780μg·kg~(-1),妈姑镇高含量的∑PAHs积累可能与当地长时间的铅锌冶炼活动有关.PAHs组分特征表现出以2~3环和4环多环芳烃为主.根据荷兰土壤干预值,妈姑镇农田土壤96.6%受到了不同程度的污染,其中,轻微污染、中度污染和重度污染所占比例分别为31.0%、24.1%和41.5%.研究区域PAHs的主要来源为煤和生物质的不完全燃烧及石油源.妈姑镇的新厂村、何家冲村、平桥组、拱桥村及赫章县的达依乡采样点土壤中PAHs的TEQBap10超过了荷兰土壤干预值规定的TEQBap10限值33.0μg·kg~(-1),说明赫章县、尤其是赫章县典型铅锌冶炼区妈姑镇农田土壤已受到PAHs的污染,存在潜在的生态风险.  相似文献   

6.
三峡库区消落带土壤汞形态分布与风险评价   总被引:18,自引:13,他引:5  
张成  陈宏  王定勇  孙荣国  张金洋 《环境科学》2014,35(3):1060-1067
为了解三峡库区消落带土壤中汞污染现状和环境风险,选择重庆14个区县的消落带,采集了192个土壤样品,分析其土壤总汞和汞形态分布,探讨其生物可利用性,对比研究和评估土壤总汞与汞赋存形态的污染水平和生态风险.结果表明,三峡库区消落带土壤中汞含量差异较大,土壤汞含量为22.4~393.5μg·kg-1,平均值为(84.2±54.3)μg·kg-1,76.6%的采样点土壤汞含量超过了三峡库区土壤汞背景值.土壤中的汞以残留态为主,不同汞形态所占比例为:水溶态汞4.1%、酸溶态15.5%、碱溶态汞18.3%、过氧化氢溶态汞10.9%、残留态汞51.3%.各区县土壤中生物可利用性汞(水溶态汞、酸溶态汞与碱溶态汞之和)平均含量为19.7~36.6μg·kg-1,生物可利用态汞占总汞的比例达到22.1%~51.6%.地累积指数和潜在生态危害指数评价结果均表明,三峡库区消落带土壤中汞赋存形态的污染水平和生态风险都较低,由生物可利用态汞带来的生态风险也很小;而对土壤总汞含量评价的结果明显偏大.因此,采用汞赋存形态进行污染现状和生态危害评价更能反映消落带土壤汞的环境风险.  相似文献   

7.
为科学评估突发镉、铊污染事件及应急处置对贺江生态风险的影响,分别于2013年7月、11月和2014年8月采集水样和沉积物,分析重金属镉(Cd)、铊(Tl)、铅(Pb)、铬(Cr)、砷(As)、汞(Hg)、锌(Zn)、镍(Ni)和铜(Cu)的含量,并采用地积累指数法(I_(geo))和潜在生态风险指数法(RI)综合评价贺江沉积物重金属的污染水平和潜在风险程度.结果表明:事件应急期间,水体中Cd含量为0.08~38.35μg·L~(-1),部分点位超地表水Ⅲ类水标准,Tl含量为0.02~0.65μg·L~(-1),除背景点(龟石水库)外其余点位均未达到生活饮用水卫生标准,其余重金属除Hg外均达到地表水Ⅲ类水标准;沉积物中Cd和Tl含量分别为1.40~68.70 mg·kg~(-1)和0.32~1.39 mg·kg~(-1),均超过背景值(Tl除西江交汇口下游500 m点位),其余重金属在大部分点位均超背景值.事件后恢复期,水质均达地表水Ⅲ类水标准,而沉积物重金属含量均大幅降低,表明贺江水环境恢复良好.贺江沉积物中Cd在各个点位的I_(geo)均为最大,是主要的重金属污染物,其它重金属元素处于清洁到偏中度污染程度;Cd是贺江最主要的具有潜在生态危害的重金属污染物,其次是Hg、As、Tl、Pb和Cu,而Zn、Cr和Ni对潜在生态风险指数的贡献率较小.Cd、As、Pb和Cu元素两两之间呈显著相关,表明有相同的污染来源.本研究通过对贺江镉、铊污染事件应急处置前后水质和沉积物的生态风险进行评价,可为该流域重金属污染防治和水环境管理提供科学依据.  相似文献   

8.
顺德水道土壤及沉积物中重金属分布及潜在生态风险评价   总被引:5,自引:3,他引:2  
水源地周边土壤及河道沉积物的环境质量状况极大程度影响着河流饮用水安全.为调查顺德水道水源地重金属空间分布特征及其污染来源,本研究采集了顺德水道周边表层土壤及其主要支流入河口沉积物,并测定各样品中Cd、Zn、Pb、Cu、Ni、Cr等6种重金属浓度,最后基于两种潜在生态风险评价方法对其生态风险进行评价.结果发现,顺德水道表层土壤中Zn、Cr、Pb、Cu、Ni和Cd平均含量分别为186.80、65.88、54.56、32.47、22.65和0.86 mg·kg~(-1),除Cu、Ni外其它重金属均超过顺德土壤背景值;8个主要支流入河口间表层沉积物中6种重金属元素平均含量依次为:Zn(312.11 mg·kg~(-1))Cr(111.41mg·kg~(-1))Pb(97.87 mg·kg~(-1))Cu(92.32 mg·kg~(-1))Ni(29.89 mg·kg~(-1))Cd(1.72 mg·kg~(-1)),除Ni之外其余均高于顺德土壤背景值.主成分分析结果发现表层土壤中Cr、Ni含量主要受自然母质影响,Zn、Pb、Cu和Cd主要来源于该地区制造业的废水排放;沉积物中6种重金属均来源于外源输入,受顺德水道周边的工业活动影响.基于环境生物可利用态的潜在生态风险评价结果发现顺德水道周边表层土壤中Cd呈现轻微的潜在生态危害,而入河口沉积物中Cd呈现中度的潜在生态危害,土壤和沉积物中Zn、Pb、Cu和Ni的潜在生态危害程度均表现为轻微.由于基于环境生物可利用态的潜在生态风险评价充分考虑了土壤理化性质及重金属形态,其结果低于Hakanson潜在生态风险评价结果,可避免对重金属的潜在危害程度的高估.  相似文献   

9.
以西南某铅锌矿区周边农田土壤作为研究对象,采集土壤表层(0~20 cm)149个土壤样品,分析测定了As、Cd、Cr、Cu、Hg、Ni、Pb、Zn共8种重金属含量.采用多元统计分析,揭示了研究区农田土壤重金属污染的主要来源及各元素之间的相关性;并应用Hakanson潜在生态风险指数法,对农田土壤生态风险进行评价.结果表明,研究区农田土壤重金属Cd、Pb、Zn含量相对处于极高水平,均值分别为15.56、419.4、933.4 mg·kg~(-1),污染十分严重;Hg和As的均值分别为0.13 mg·kg~(-1)和37.3 mg·kg~(-1),属于中度污染;Cu、Ni、Cr的均值分别为26.1、14.3、33.4 mg·kg~(-1),未超过云南省土壤环境背景值;多元统计分析结果显示Cd、Pb、Zn、Hg、As这5种元素来源相似,主要来源于矿山开采和工业活动;Cu、Ni、Cr这3种元素来源相似,主要是自然来源;研究区综合潜在生态风险指数RI的均值为2 294.8,整体上处于极高生态风险水平.矿区开采和工业活动对农田土壤造成了严重的重金属污染.  相似文献   

10.
研究了江西省典型钨矿区开采和冶炼对周边农田土壤、水体和白菜中稀土元素含量的影响.结果表明:钨矿区周边农田土壤中稀土元素含量范围在256~459 mg·kg~(-1)之间,平均值为373 mg·kg~(-1),土壤中稀土含量均高于江西省和全国土壤稀土元素含量的背景值,分别是它们的1.77倍和1.99倍.矿区河水中稀土元素浓度达3086μg·L~(-1),为对照区河水稀土元素浓度的497倍.矿区15个样地白菜稀土元素含量范围为773~5992μg·kg~(-1),平均值为3007μg·kg~(-1),为非矿区白菜稀土元素含量的5.22倍,矿区白菜稀土元素含量远超过我国蔬菜卫生标准稀土元素含量的限值(0.70 mg·kg~(-1)),说明钨矿开采冶炼已造成周边环境的污染,并对矿区居民身体健康构成潜在威胁.  相似文献   

11.
以受盐渍化和重金属双重胁迫的天津污灌区土壤为研究对象,通过径流实验和淋溶实验,探讨盐渍化土壤重金属的释放特征及对水质安全的影响.研究的盐分种类为污灌区土壤盐渍化进程中的主要盐分Na Cl,设置的盐度梯度为7个,添加质量分数为0(CK)~5%,污染土壤中Cd、Pb和Hg含量分别为2.21、234.1和0.601 mg·kg~(-1).结果表明,(1)不同盐度处理下产流所需时间为(51'25″±15″),盐度对径流产流时间影响不显著;(2)随着Na Cl盐度梯度的提高,土壤径流和淋溶液中Cd、Pb和Hg的累计释放量均显著上升.Cd累计释放量从CK的53.40μg·kg~(-1)(径流)和55.63μg·kg~(-1)(淋溶)分别提高到5%Na Cl盐度处理的122.56μg·kg~(-1)(径流)和135.79μg·kg~(-1)(淋溶),Pb的累计释放量从CK的168.30μg·kg~(-1)(径流)和94.44μg·kg~(-1)(淋溶)分别提高到5%Na Cl盐度处理的340.68μg·kg~(-1)(径流)和201.93μg·kg~(-1)(淋溶),Hg的累计释放量从CK的39.66μg·kg~(-1)(径流)和9.60μg·kg~(-1)(淋溶)分别提高到5%Na Cl处理的89.37μg·kg~(-1)(径流)和11.97μg·kg~(-1)(淋溶).同时,径流及淋溶液中可溶态重金属含量显著上升,颗粒态含量有所下降,其所占比例也显著下降.Cl-含量与重金属累计释放量之间关系可以用线性或对数模型拟合.(3)高盐度处理下径流和淋出液中Cd浓度超过地下水水质Ⅲ类标准,对环境及地下水存在一定威胁;径流和淋溶前期Pb浓度超过Ⅲ类标准;径流和淋溶过程中Hg浓度均超过Ⅲ类标准,风险较高.本研究结果表明高强度降雨强度下污染农田土壤重金属释放风险不可忽视.  相似文献   

12.
为了解与评价某生物质电厂周边农田土壤多环芳烃的污染状况,按照点源扇形布点原则,在电厂周边4个方位不同距离布点,在远离电厂区域设置对照点.参照《土壤环境监测技术规范》(HJ/T 166—2004)采样,共采集25个农田土壤样品.取经过处理的样品5.00 g,用乙腈超声提取、浓缩后,HPLC法测定15种PAHs的含量.描述其空间分布特征,采用特征污染物分析、环数分析、异构体比值分析及聚类分析等方法解析污染来源,运用荷兰分级标准评价法进行生态安全评价.结果显示生物质电厂周边农田土壤中15种PAHs总量为311μg·kg~(-1)(204~576μg·kg~(-1)),TEQ(BaP)为21.9μg·kg~(-1)(4.39~58.1μg·kg~(-1)),明显高于对照区的193μg·kg~(-1)(76.1~329μg·kg~(-1))和12.7μg·kg~(-1)(0.499~31.9μg·kg~(-1)).在常年主导风向下风向,BaP、PAHs总量和TEQ(BaP)随烟囱距离的增加呈抛物线趋势分布,最大值在距电厂1000 m处.生物质电厂周边农田土壤中高环PAHs组分高于对照区和燃煤电厂周边,生物质燃烧是该区域PAHs的主要来源.生物质电厂周边农田土壤中BaP、∑PAHs和TEQ(BaP)高于燃煤电厂和医疗垃圾焚烧厂,存在不容忽视的生态风险.  相似文献   

13.
梁子湖沉积物重金属污染现状分析及风险评价   总被引:6,自引:0,他引:6  
采集了梁子湖柱状沉积物,分析了Cd、Sn、As、Cu、V、Zn、Ni、Cr、Co、TI、Pb和Mo 12种重金属元素的含量及空间分布,并对其污染源进行解析,最后对重金属的生态风险作出评价.结果表明,在空间分布上,东部湖区存在严重的重金属污染问题,其中,Cd的平均含量达到0.80 mg·kg~(-1),是湖北省土壤背景值的4.66倍;Sn和As平均含量分别为6.35 mg·kg~(-1)和35 mg·kg~(-1),已经超过湖北省土壤背景值近2倍;在垂直分布上,Cd和Zn在0~20 cm深度上富集现象明显,平均含量分别为0.67 mg·kg~(-1)和116 mg·kg~(-1).富集系数EF值表明,Cd、Sn、As主要来自人为污染.单一重金属潜在生态风险指数Eri值范围在3~140之间,以Cd污染最严重,Eri平均值为140,表现为较重生态风险,其他11种元素均为低等生态风险水平.综合生态风险指数RI值显示,梁子湖整体处于中度污染水平,其中,东部湖区风险程度最大.梁子湖作为武汉市备用水源地,沉积物重金属Cd、Sn、As含量过高将威胁湖水质量,危及水生态安全和人体健康.  相似文献   

14.
陈姗  许凡  谢三桃  郭天星  彭久赞  雷琦  张玮  王丽卿 《环境科学》2019,40(11):4932-4943
十八联圩是南淝河入巢湖湖口区一处由"退耕还湿"形成的大型人工湿地.为了解其表层沉积物营养盐与重金属分布和污染特征,于2018年7月采集湿地内部和外部毗邻水体共72个位点的沉积物样品进行调查,并对污染来源进行了分析.结果表明,在十八联圩湿地内部水体中,表层沉积物总氮(TN)、总磷(TP)和有机质(OM)平均含量分别为2 108. 87mg·kg~(-1)、1 448. 82 mg·kg~(-1)和86. 2 g·kg~(-1),而在外部水体中,分别为2 305. 81 mg·kg~(-1)、1 268. 46 mg·kg~(-1)和59. 9 g·kg~(-1).重金属Mn、Cr、Cu、Pb、Cd、As和Hg在湿地内、外部水体中的平均含量分别为462. 58、42. 12、21. 69、18. 05、0. 63、5. 67和0. 059 mg·kg~(-1); 381. 61、36. 85、24. 74、30. 70、2. 49、6. 47和0. 035 mg·kg~(-1).湿地内水体表层沉积物,在营养盐污染评价中,TN整体处于轻度至中度污染水平,TP整体处于重度污染水平,营养盐整体处于中度至重度污染水平;在有机污染指数评价中,OM整体处于中度至重度污染水平;在重金属潜在生态风险评价中,潜在生态风险指数(RI)和潜在生态风险系数(Eir)表明,部分区域的Cd与Hg具有一定的生态风险.而湿地外毗邻水体表层沉积物的营养盐水平同样较高,且重金属污染严重,所有位点均达到强生态风险以上.  相似文献   

15.
王书锦  刘云根  王妍  侯磊  张超 《环境科学》2016,37(12):4615-4625
以云南洱海罗时江河口湿地为典型对象,利用柱状底泥分层采样器采集罗时江河口湿地表层(0~10 cm)、中层(10~30 cm)和底层(30~60 cm)沉积物样品,分析干、湿季沉积物总氮(TN)、总磷(TP)、有机质(OM)垂向分布特征,并对沉积物进行污染风险评价.结果表明:1干季罗时江河口湿地表层、中层和底层沉积物TN平均含量分别为1.734、1.453和1.255g·kg~(-1),TP平均值分别1.085、1.034和0.992 g·kg~(-1),OM平均值分别为59.051、47.730和42.133 g·kg~(-1);湿季罗时江河口湿地表层、中层和底层沉积物TN平均含量分别为1.147、0.948和0.895 g·kg~(-1),TP平均值分别0.599、0.523和0.519g·kg~(-1),OM平均值分别为53.098、46.897和43.395 g·kg~(-1);干、湿季各指标含量垂向分布随沉积深度的增加呈下降趋势,表层富集明显;三层沉积物各指标含量均为干季高于湿季,且除OM外,TN和TP均达到显著差异(P0.01).2单因子指数(PI)、有机氮指数(ON)和有机指数(OI)评价结果表明,整体上干季沉积物氮磷属于重度污染,有机质属于中度污染;湿季沉积物氮和有机质均为中度污染,磷为轻度污染;总体上沉积物氮、磷、有机质污染水平为干季高于湿季,且干、湿季各污染指数均为表层最高,中层次之,底层最低,表层污染最为严重.3干、湿季罗时江河口湿地污染来源存在差异,干季以外源为主,湿季以内源为主;干季沉积物营养盐潜在释放风险较湿季大,且以表层释放风险最大.  相似文献   

16.
卓海华  孙志伟  谭凌智  吴云丽  兰静 《环境科学》2016,37(12):4633-4643
三峡工程建设以来,三峡水库干支流水文形势已发生了重大变化,造成水体悬浮物沉降条件改变,可能导致库区表层沉积物性状发生变化.通过对2000~2015年三峡水库干流江津至坝址段和嘉陵江、御临河、乌江、小江、大宁河、香溪河等主要支流表层沉积物中重金属污染物含量水平、时空变化及潜在生态风险变化趋势分析,结果表明,三峡库区在2000~2015年长江干流沉积物中铜、铅、锰、砷、汞元素各断面含量平均值区间分别为46.5~85.7、43.8~65.1、784.2~910.6、8.44~11.91、0.193~0.236 mg·kg~(-1);支流沉积物中铜、铅、锰、砷、汞元素含量平均值区间分别为16.5~85.6、25.8~74.8、573.7~996.3、6.96~13.31、0.160~0.232 mg·kg~(-1).三峡水库干流局部河段左右岸表层沉积物中重金属含量存在较明显差异;铜、铅、锰、砷、汞元素在表层沉积物中含量变化趋势各异,不同水期干支流表层沉积物中重金属含量存在一定程度波动,其中汞元素变化最为明显.不同元素在不同断面随时间变化趋势不完全一致.库区沉积物中铜、铅、锰、砷等元素含量呈现显著的正相关,但砷与其他元素相关性低;汞元素与其他重金属之间无明显相关性.地累积指数法评价表明,三峡库区表层沉积物重金属总体处于较低富集水平,但汞元素污染值得注意;长江干流及除乌江外主要支流大部分时段表层沉积物重金属潜在生态风险指数变化较小,只在部分时段出现升高的情形;乌江表层沉积物重金属潜在生态风险指数2008年前处于相对较高水平,但2008年后下降并趋于稳定.  相似文献   

17.
微生物对汞矿区农田土壤汞甲基化的影响   总被引:2,自引:1,他引:1  
为研究典型汞矿区农田土壤中汞的甲基化作用,实验以受汞污染的旱田土壤和稻田土壤为对象,分别进行灭菌,促进硫酸盐还原菌(SRB)活性处理,抑制SRB活性处理以及促进铁还原菌(FeRB)活性处理,分析非微生物作用和微生物作用对土壤甲基汞(MeHg)生成的影响.结果表明,促进SRB活性处理的土壤MeHg生成量最高,其中旱田土MeHg增量为0.15~0.38μg·kg~(-1),稻田土壤MeHg增量为1~2μg·kg~(-1);抑制SRB活性处理和促进FeRB活性处理的MeHg增量较小,最高值仅为0.025μg·kg~(-1).相比于旱田土壤,稻田土壤具有更高的汞甲基化能力,其MeHg生成量是旱田土壤的4~9倍.土壤SRB数量与MeHg生成量具有相同的变化趋势,二者具有显著的正相关性(R~2=0.57,P0.01).因此,该研究区土壤汞甲基化作用主要是微生物汞甲基化作用,且主要的汞甲基化细菌是SRB.此外,稻田是农田中MeHg生成的活跃地区,在评估和控制MeHg对人体健康危害时需要重点关注.  相似文献   

18.
选取山西省汾河沿岸71个代表性农田土壤,采用液相色谱-质谱联用法(LC-MS/MS)分析了4种喹诺酮类抗生素(quinolones,QLs)的残留水平和空间分布特征,探究影响抗生素残留的环境因子,并评估QLs残留的生态风险.结果表明:①汾河沿岸农田土壤中QLs检出情况为:诺氟沙星(norfloxacin,NFC)、环丙沙星(ciprofloxacin,CFC)、恩氟沙星(enrofloxacin,EFC)检出率为100%,氧氟沙星(ofloxacin,OFC)检出率为98.6%,QLs分布广泛.土壤样品中QLs组成以NFC为主,平均检出浓度为2.54μg·kg~(-1),其次为CFC和OFC,平均检出浓度分别为0.54μg·kg~(-1)和0.36μg·kg~(-1).②空间分布特征分析表明,上中游QLs检出情况相似,均表现为EFC OFC CFC NFC,下游表现为EFC CFC OFC NFC.汾河中游沿岸农田土壤抗生素浓度最高,太原市清徐县4种QLs平均残留浓度为沿河县市最高,为19.67μg·kg~(-1),灵石县次之,为15.21μg·kg~(-1),应引起重视.③冗余分析表明,QLs含量与pH呈负相关;NFC、CFC和EFC与有机质含量无明显相关关系,OFC与有机质含量呈正相关,这可能与OFC中氧与有机质中极性官能团发生氢键作用有关;NFC、CFC和EFC与阳离子交换量(CEC)呈正相关,而OFC无明显相关,可能与弱极性环氧醚的弱作用力有关;NFC、OFC含量与土壤砂粒含量呈正相关.④汾河沿岸农田土壤中QLs生态风险较低,其中NFC、OFC和CFC呈中低度风险,EFC全部表现为低风险.本研究旨在为汾河沿岸QLs污染控制与农产品安全监督提供科学依据.  相似文献   

19.
水分条件对稻田土壤汞甲基化影响的模拟研究   总被引:2,自引:0,他引:2  
通过培养实验,研究了70%田间持水量、干湿交替及淹水等3种水分管理方式对外源Hg在稻田土壤中甲基化的动态过程.外源添加浓度为5 mg·kg~(-1)Hg~(2+),培养时间为42 d.结果表明,70%田间持水量下,土壤甲基汞(Me Hg)含量基本保持稳定,平均为11.55μg·kg~(-1);淹水条件下,土壤Me Hg含量呈上升趋势,平均为30.70μg·kg~(-1),约为70%田间持水量的2.7倍;干湿交替条件下,土壤Me Hg呈现"涨-消"的波动趋势,平均含量为20.41μg·kg~(-1),约为70%田间持水量的1.7倍.培养结束后土壤Me Hg含量和占总Hg比例依次为:淹水(37.42μg·kg~(-1),0.76%)干湿交替(16.08μg·kg~(-1),0.33%)70%田间持水量(11.75μg·kg~(-1),0.25%),表明淹水条件有利于稻田土壤中汞的甲基化.Elovich方程可以拟合淹水条件下稻田土壤Me Hg含量变化的动力学过程,表明土壤中Me Hg含量在试验前期(7 d)快速升高,随后呈现缓慢增长的趋势.培养期间,各水分处理下稻田土壤中硫酸盐还原菌(SRB)数量均表现为上下波动式的周期性变化特征,均值分别为(533±31)cfu·g~(-1)(70%田间持水量)、(615±39)cfu·g~(-1)(淹水)和(509±43)cfu·g~(-1)(干湿交替).相关分析表明,土壤Me Hg含量与硫酸盐还原菌(SRB)数量、氧化还原电位(E_h)、土壤含水量之间的相关性达到了显著性水平(p0.05),与其他因素之间无显著相关性.可以推测,在稻田土壤淹水形成的厌氧环境中,SRB可能是生物汞甲基化的优势菌群.  相似文献   

20.
以汉江余姐河小流域为研究区域,运用经典统计学与地统计学方法,分析流域不同土地利用类型下表层(0~20 cm)土壤全磷和速效磷的空间分布特征及磷素有效性.结果表明:流域农地、林地和草地土壤全磷含量平均值分别为0.368 g·kg~(-1)、0.347 g·kg~(-1)和0.348 g·kg~(-1),土壤速效磷含量均值分别为17.52 mg·kg~(-1)、19.23 mg·kg~(-1)和17.90 mg·kg~(-1).土壤全磷和速效磷空间分布的最优模型均为高斯模型且均具有中等空间相关性.克里格插值表明研究区土壤全磷呈斑块状分布,速效磷含量的高值区沿河流呈网状分布,尤其是速效磷含量为10~20 mg·kg~(-1)和20~30 mg·kg~(-1)的区域从流域上游至下游以河流为主线依次连通.经ANOVA检验,土地利用类型对土壤全磷和速效磷的空间分布影响不显著(p0.05),不同土地利用下每平方米土壤全磷含量表现为草地农地林地,分别为0.092 kg·m~(-2)、0.089 kg·m~(-2)和0.087 kg·m~(-2),速效磷含量表现为草地林地农地,分别为4.67 g·m~(-2)、4.11 g·m~(-2)和3.89 g·m~(-2),流域土壤磷素的有效性呈现出林地草地农地的特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号