首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Photochemical production of formaldehyde (HCHO) was measured in rainwater from 13 precipitation events in Wilmington, North Carolina, USA under conditions of simulated sunlight. HCHO concentrations increased in all samples irradiated with no changes observed in dark controls. HCHO photoproduction rates were strongly correlated with dissolved organic carbon (DOC) suggesting HCHO was derived from direct or indirect photolysis of rainwater DOC. The higher photoproduction rates (0.03–2.9 μM h?1) relative to those reported for surface waters suggests that rainwater DOC is more photolabile in terms of HCHO production than surface waters. HCHO photoproduction rates were higher in growing season (1.0 ± 1.0 μM h?1) compared to non-growing season (0.08 ± 0.05 μM h?1) even when rates were normalized for DOC (6.8 ± 3.6 μM h?1 mM C?1 versus 1.8 ± 1.0 μM h?1 mM C?1). The higher growing season rate may be related to seasonal differences in the composition of DOC as evidenced by differences in fluorescence per unit carbon of rainwater samples. Irradiation of C18 extracts of rainwater also produced HCHO, but at lower rates compared to corresponding whole rain samples, suggesting that hydrophyllic components of rainwater play a role in HCHO photoproduction. Our results indicate that photolysis of rainwater DOC produces significant amounts of HCHO, and possibly other low molecular weight organic compounds, likely increasing its reactivity and bioavailability.  相似文献   

2.
Sampling and analysis of carbonaceous compounds in particulate matter presents a number of difficulties related to artefacts during sampling and to the distinction between organic (OC) and elemental carbon (EC) during analysis. Our study reports on a comparative analysis of OC, EC and WSOC (water-soluble organic carbon) concentrations, as well as sampling artefacts, for PM2.5 aerosol in three European cities (Amsterdam, Barcelona and Ghent) representing Southern and Western European urban environments. Comparability of results was ensured by using a single system for sample analysis from the different sites. OC and EC concentrations were higher in the vicinity of roads, thus having higher levels in Amsterdam (3.9–6.7 and 1.7–1.9 μg m−3, respectively) and Barcelona (3.6–6.9 and 1.5–2.6 μg m−3) than in Ghent (2.7–5.4 and 0.8–1.2 μg m−3). A relatively larger influence of secondary organic aerosols (SOA), as deduced from a larger OC/EC ratio, was observed in Ghent. In absolute sense, WSOC concentrations were similar at the three sites (1.0–2.3 μg m−3). Positive artefacts were higher in Southern (11–16% of the OC concentration in Barcelona) than in Western Europe (5–12% in Amsterdam, 5–7% in Ghent). During special episodes, the contribution of carbonaceous aerosols from non-local sources accounted for 67–69% of the OC concentration in Western Europe, and for 44% in Southern Europe.  相似文献   

3.
Emission factors (EFs) of pollutants from post-harvest agricultural burning are required for predicting downwind impacts of smoke and inventorying emissions. EFs of polycyclic aromatic hydrocarbons (PAH), methoxyphenols (MP), levoglucosan (LG), elemental carbon (EC) and organic carbon (OC) from wheat and Kentucky bluegrass (KBG) stubble burning were quantified in a US EPA test burn facility. The PAH and MP EFs for combined solid+gas phases are 17±8.2 mg kg−1 and 79±36 mg kg−1, respectively, for wheat and 21±15 mg kg−1 and 35±24 mg kg−1, respectively, for KBG. LG, particulate EC and artifact-corrected OC EFs are 150±130 mg kg−1, 0.35±0.16 g kg−1 and 1.9±1.1 g kg−1, respectively, for wheat and 350±510 mg kg−1, 0.63±0.056 g kg−1 and 6.9±0.85 g kg−1, respectively, for KBG. Positive artifacts associated with OC sampling were evaluated and remedied with a two-filter system. EC and OC accounted for almost two-thirds of PM2.5 mass, while LG accounted for just under 3% of the PM2.5 mass. Since EFs of these pollutants generally decreased with increasing combustion efficiency (CE), identifying and implementing methods of increasing the CEs of burns would help reduce their emissions from agricultural field burning. PAH, OC and EC EFs are comparable to other similar studies reported in literature. MP EFs appear dependent on the stubble type and are lower than the EFs for hard and softwoods reported in literature, possibly due to the lower lignin content in wheat and KBG.  相似文献   

4.
About 60 rainwater samples were collected at west Los Angeles, California in 1981–1984 and were analyzed for C1–C9 monocarboxylic acids (0.33–79 μM, average (av.) 13±15 μM), C2–C10 dicarboxylic acids (2.9–51 μM, av. 7.5±14 μM) and C1–C4 aldehydes (0.85–28 μM, av. 9.2±11 μM). Distributions of monocarboxylic acids show a predominance of formic (average concentration: 6.5 μM) and acetic (av. 5.6 μM) acids followed by propionic acid (av. 0.44 μM). Oxalic acid is the dominant diacid (av. 3.9 μM) followed by succinic acid (av. 1.0 μM). Formaldehyde (av. 6.9 μM) is the dominant aldehyde, with the next most abundant, acetaldehyde, being minor (av. 0.65 μM). For select rain samples described in this paper, were found to comprise monocarboxylic acids 0.9–12.3% (av. 4.4±3.4%), diacids comprise 1.2–9.5% (av. 4.2±3.3%) and aldehydes comprise 0.2–6.2% (av. 2.1±2.2%) of total organic carbon (TOC, 2.0–18.6 mg C l−1; av. 9.8±5.4 mg C l−1). Annual rain fluxes of monocarboxylic acids and aldehydes during 1982–1983 were calculated to be 0.24 and 0.11 g m−2 yr−1, respectively, with an annual estimated wet deposition in the Los Angeles Basin of 3120 and 1430 tons, respectively. These fluxes are equivalent to 2500 times of the acids and 2.5 times of the aldehydes emitted from automobile exhausts in the Los Angeles air basin. This comparison suggests that major portions of the carboxylic acids detected in the rain are not directly emitted from auto-exhausts, but are most likely produced in the atmosphere by gaseous and/or aqueous phase photo-induced reactions.  相似文献   

5.
Formaldehyde (HCHO) concentrations were measured in 116 rain samples in Wilmington, NC from June 1996 to February 1998. Concentrations ranged from below the detection limit of 10 nM, to 13 μM, in the range of HCHO levels reported at other locations worldwide. The volume-weighted annual average rainwater formaldehyde concentration was 3.3±0.3 μM and comprised approximately 3% of the measured dissolved organic carbon. Using the volume weighted average HCHO concentration and annual precipitation of 1.4 m, an annual formaldehyde deposition of 4.6 mmol m−2 yr−1 was determined. Rainwater is a significant source of formaldehyde to surface waters and may contribute as much as 30 times the resident amount found in natural waters of southeastern North Carolina during the summer. Formaldehyde concentrations did not correlate with precipitation volume suggesting continuous supply during rain events. Evidence is presented which indicates part of this supply may be from direct photochemical production in the aqueous phase. Formaldehyde levels exhibited a distinct seasonal oscillation, with higher concentrations during the summer. This pattern is similar to that observed with other rainwater parameters at this site including pH, nitrate, and ammonium, and is most likely the result of increased photochemical production, as well as biogenic and anthropogenic emissions during summer months. The concentration of formaldehyde in both winter El Nino rains and summer tropical rains was less than half its concentration in non-El Nino or non-tropical events, suggesting significant terrestrial input. Formaldehyde was correlated with hydrogen peroxide and non-sea-salt sulfate deposition suggesting a relationship between HCHO, H2O2, S(VI) within the troposphere.  相似文献   

6.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

7.
Fifty-five seasonal PM2.5 samples were collected March 2003–January 2004 at Changdao, a resort island located at the demarcation line between Bohai Sea and Yellow Sea in Northern China. Changdao is in the transport path of the continental aerosols heading toward the Pacific Ocean in winter and spring due to the East Asia Monsoon. Solvent-extractable organic compounds (SEOC), organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) were analyzed for source identification based on molecular markers. This data set provides useful information for the downstream site researchers of the Asian continental outflow. Total carbon (TC, OC+EC) was ∼18 μg m−3 in winter, ∼9 μg m−3 in spring and autumn and a large part of the TC was WSOC (33% in winter, >45% in the other seasons). Winter and spring were the high SEOC seasons with n-fatty acids the highest at ∼290 and ∼170 ng m−3, respectively, followed by n-alkanes at ∼210 and ∼90 ng m−3, and polycyclic aromatic hydrocarbons (PAHs) were also at high at ∼120 and ∼30 ng m−3. High WSOC/TC, low C18:1/C18 of fatty acids, and low concentrations of labile PAHs such as benzo(a)pyrene, together with back trajectory analysis suggested that the aerosols were aged and transported. PAHs, triterpane and sterane distributions provided evidence that coal burning was the main source of the continental outflow. The detection of levoglucosan and β-sitosterol in nearly all the samples showed the impact of biomass burning.  相似文献   

8.
We determined hourly emissions of isoprene, monoterpenes and sesquiterpenes from Siberian larch, one of the major tree species in Siberian forests. Summer volatile organic compounds (VOCs) emission from Siberian larch consisted mainly of monoterpenes (about 90%). The monoterpene emission spectrum remained constant during the measurement period, almost half was sabinene and other major monoterpenes were Δ3-carene, β- and α-pinene. During spring and summer, about 10% of the VOCs were sesquiterpenes, mainly α-farnesene. The sesquiterpene emissions declined to 3% in the fall. Isoprene, 2-methyl-3-buten-2-ol (MBO) and 1,8-cineole contributed to less than 3% of the VOC emission during the whole period. The diurnal variation of the emissions could be explained using a temperature-dependent parameterization. Emission potentials normalized to 30 °C were 5.2–21 μg gdw−1 h−1 (using β-value of 0.09 °C−1) for monoterpenes and 0.4–1.8 μg gdw−1 h−1 (using β-value of 0.143 °C−1, mean of determined values) for sesquiterpenes. Normalized monoterpene emission potentials were highest in late summer and elevated again in late fall. Sesquiterpene emission potentials were also highest in late summer, but decreased towards fall.  相似文献   

9.
Motor vehicle (MV) emissions and ambient particle concentrations under a variety of situations were studied in Toronto and Vancouver, Canada. Petroleum biomarkers (i.e., hopanes and steranes) were used to determine the fraction of fine particle organic carbon (OC) attributed to primary particles in MV exhaust. Source profiles obtained from a tunnel and from direct tailpipe emissions were applied to ambient measurements at locations ranging from rush hour traffic to a regional background site. The greatest amount of MV OC, 4.0 μgC m−3 out of 9.1 μgC m−3 or 43%, was observed 75 m south of a commuter highway during a period that included morning rush hour. Monthly estimates of MV-OC were determined for a downtown Toronto monitoring site for 2 years. Total OC concentrations were greater in the summer, due to secondary OC, but the amount of MV-OC did not exhibit a strong seasonal pattern. However, on a per cent basis, MV contributions from primary OC emissions were greatest in the winter (15–20%) and smallest in the summer (10–15%) with a two-year average of 14% of the OC or about 5% of the PM2.5.  相似文献   

10.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

11.
While the existence of black carbon as part of dissolved organic matter (DOM) has been confirmed, quantitative determinations of dissolved black carbon (DBC) in freshwater ecosystem and information on factors controlling its concentration are scarce. In this study, stream surface water samples from a series of watersheds subject to different burn frequencies in Konza Prairie (Kansas, USA) were collected in order to determine if recent fire history has a noticeable effect on DBC concentration. The DBC levels detected ranged from 0.04 to 0.11 mg L?1, accounting for ca. 3.32 ± 0.51% of dissolved organic carbon (DOC). No correlation was found between DBC concentration and neither fire frequency nor time since last burn. We suggest that limited DBC flux is related to high burning efficiency, possibly greater export during periods of high discharge and/or the continuous export of DBC over long time scales. A linear correlation between DOC and DBC concentrations was observed, suggesting the export mechanisms determining DOC and DBC concentrations are likely coupled. The potential influence of fire history was less than the influence of other factors controlling the DOC and DBC dynamics in this ecosystem. Assuming similar conditions and processes apply in grasslands elsewhere, extrapolation to a global scale would suggest a global grasslands flux of DBC on the order of 0.14 Mt carbon year?1.  相似文献   

12.
There are a number of difficulties associated with the quantitative analysis of volatile organic compounds (VOCs) in atmospheric particles. Therefore, majority of the previous studies on VOCs associated with particles have been qualitative. Air samples were collected in Izmir, Turkey to determine ambient particle and gas phase concentrations of several aromatic, oxygenated and halogenated VOCs. Samples were quantitatively analyzed using thermal desorption–gas chromatography/mass spectrometry. Gas-phase concentrations ranged between 0.02 (bromoform) and 4.65 μg m−3 (toluene) and were similar to those previously measured at the same site. Particle-phase concentrations ranged from 1 (1,3-dichlorobenzene) to 933 pg m−3 (butanol). VOCs were mostly found in gas-phase (99.9±0.25%). However, the particulate VOCs had comparable concentrations to those reported previously for semivolatile organic compounds. The distribution of particle-phase VOCs between fine (dp<2.5 μm) and coarse (2.5 μm<dp<10 μm) fractions was also investigated. It was found that VOCs were mostly associated with fine particles.  相似文献   

13.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

14.
Black carbon (soot) concentrations have been measured in rain water, snow samples and near surface air at several locations in Nova Scotia, Canada. The average black carbon concentration in near surface air in summer was found to be 0.54 μg m-3 compared to 1.74 μg m-3 in the winter season. These values are comparable to black carbon concentrations found in other mid-size urban areas. The black carbon concentration in rain water and snow samples varied between an undetectable amount to about 20 μg kg-1 of rain (or melt) water. The relatively low concentrations of black carbon in precipitation are attributed to extratropical cyclones that often develop off-shore to the east and south of Nova Scotia in relatively clean conditions of the marine boundary layer.  相似文献   

15.
Carbonaceous aerosol particles were observed in a residential area with wood combustion during wintertime in Northern Sweden. Filter samples were analyzed for elemental carbon (EC) and organic carbon (OC) content by using a thermo-optical transmittance method. The light-absorbing carbon (LAC) content was determined by employing a commercial Aethalometer and a custom-built particle soot absorption photometer. Filter samples were used to convert the optical signals to LAC mass concentrations. Additional total PM10 mass concentrations and meteorological parameters were measured. The mean and standard deviation mass concentrations were 4.4±3.6 μg m−3 for OC, and 1.4±1.2 μg m−3 for EC. On average, EC accounted for 10.7% of the total PM10 and the contribution of OC to the total PM10 was 35.4%. Aethalometer and custom-built PSAP measurements were highly correlated (R2=0.92). The hourly mean value of LAC mass concentration was 1.76 μg m−3 (median 0.88 μg m−3) for the winter 2005–2006. This study shows that the custom-built PSAP is a reliable alternative for the commercial Aethalometer with the advantage of being a low-cost instrument.  相似文献   

16.
An investigation of water-soluble organic carbon (WSOC) in atmospheric particles was conducted as an index of the formation of secondary organic aerosol (SOA) from April 2005 to March 2006 at Maebashi and Akagi located in the inland Kanto plain in Japan. Fine (<2.1 μm) and coarse (2.1–11 μm) particles were collected by using an Andersen low-volume air sampler, and WSOC, organic carbon (OC), elemental carbon (EC), and ionic components were measured. The mean mass concentrations of the fine particles were 22.2 and 10.5 μg m?3 at Maebashi and Akagi, respectively. The WSOC in fine particles accounted for a large proportion (83%) of total WSOC. The concentration of fine WSOC ranged from 1.2 to 3.5 μg-C m?3 at Maebashi, rising from summer to fall. At Akagi, it rose from spring to summer, associated with the southerly wind from urban areas. The WSOC/OC ratio increased in summer at both sites, but the ratio at Akagi was higher, which we attributed to differences in primary emissions and secondary formation between the sites. The fine WSOC concentration was significantly positively correlated with concentrations of SO42?, EC, and K+, and we inferred that WSOC was produced by photochemical reaction and caused by the combustion of both fuel and biomass. We estimated that SOA accounted for 11–30% of the fine particle mass concentration in this study, suggesting that SOA is a significant year-round component in fine particles.  相似文献   

17.
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.  相似文献   

18.
Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO2 ranging from 0.5 to above 40 μg S m−3. The main components in the airborne particles are (NH4)2SO4 and CaSO4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l−1 at the most rural site (LGS) to about 200 μeq l−1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l−1, while the total nitrogen concentration is between 30 and 150 μeq l−1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.  相似文献   

19.
The bioavailability and ecological risk of hydrophobic organic compounds (HOCs) in aquatic environments largely depends on their freely dissolved concentrations. In this work, the freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, pyrene, and chrysene were determined for the Yellow River, Haihe River and Yongding River of China using polyethylene devices (PEDs). The results indicated that the order of ratios of freely to total dissolved concentrations of the three PAHs was phenanthrene (66.8 ± 20.1%) > pyrene (48.8 ± 26.4%) > chrysene (5.5 ± 3.3%) for the three rivers. The ratios were significantly negatively correlated with the log Kow values of the PAHs. In addition, the ratios were negatively correlated with the suspended sediment (SPS) and dissolved organic carbon (DOC) concentrations in the river water, and the characteristics of the SPS and DOC were also important factors. Simulation experiments showed that the ratio of freely to total dissolved concentrations of pyrene in the aqueous phase decreased with increasing SPS concentration; when the sediment concentration increased from 2 g L?1 to 10 g L?1, the ratio decreased from 67.6% to 38.4% for Yellow River sediment and decreased from 50.4% to 33.6% for Haihe River sediment. This was because with increasing SPS concentration, more and more DOC, small particles and colloids (<0.45 μm) would enter the aqueous phase. Because high SPS and DOC concentrations exist in many rivers, their effect on the freely dissolved concentrations of HOCs should be considered when conducting an ecological risk assessment.  相似文献   

20.
The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na+ and Ca2+ on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH = 7. Isotherms for the beta-blocker metoprolol were obtained by sediment–water batch tests over a wide concentration range (1–100 000 μg L?1). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n = 0.9), indicating slightly non-linear behavior. Results show that the influence of Ca2+ compared to Na+ is more pronounced. A logarithmic correlation between the Freundlich coefficient KFr and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号