首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Two experimental monitoring campaigns were carried out in 2012 to investigate the air quality in the port of Naples, the most important in southern Italy for traffic of passengers and one of the most important for goods. Therefore, it represents an important air pollution source located close to the city of Naples. The concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and BTEX (benzene, toluene, ethylbenzene, and xylenes) in the air were measured at 15 points inside the Naples port area through the use of passive samplers. In addition, a mobile laboratory was positioned in a fixed point inside the port area to measure continuous concentration of pollutants together with particulate matter, ambient parameters, and wind direction and intensity. The pollution levels monitored were compared with those observed in the urban area of Naples and in other Mediterranean ports. Even though the observation time was limited, measured concentrations were also compared with limit values established by European legislation. All the measured pollutants were below the limits with the exception of nitrogen dioxide: its average concentration during the exposition time exceeded the yearly limit value. A spatial analysis of data, according to the measured wind direction and intensity, provided information about the effects that ship emissions have on ambient air quality in the port area. The main evidence indicates that ship emissions influence sulfur dioxide concentration more than any other pollutants analyzed.

Implications: Two monitoring campaigns were carried out to measure BTEX, SO2, NO2, and PM10 (particulate matter with an aerodynamic diameter <10 μm) air concentrations in the port of Naples. NO2 hourly average and PM10 daily average comply with European legislative standards. Spatial variation of pollutants long the axis corresponding to the prevailing wind direction seems to indicate a certain influence of ship emissions for SO2. For NO2 and PM10, a correlation between concentrations in the harbor and those measured by the air quality monitoring stations sited in the urban area of Naples was observed, indicating a possible contribution of the near road traffic to the air pollution in the port of Naples.  相似文献   

2.
Abstract

It is important to understand the effects of emission controls on concentrations of ozone, fine particulate matter (PM2.5), and hazardous air pollutants (HAPs) simultaneously, to evaluate the full range of health, ecosystem, and economic effects. Until recently, the capability to simultaneously evaluate interrelated atmospheric pollutants (“one atmosphere” analysis) was unavailable to air quality managers. In this work, we use an air quality model to examine the potential effect of three emission reductions on concentrations of ozone, PM2.5, and four important HAPs (formaldehyde, acetaldehyde, acrolein, and benzene) over a domain centered on Philadelphia for 12-day episodes in July and January 2001. Although NOx controls are predicted to benefit PM2.5 concentrations and sometimes benefit ozone, they have only a small effect on formaldehyde, slightly increase acetaldehyde and acrolein, and have no effect on benzene in the July episode. Concentrations of all pollutants except benzene increase slightly with NOx controls in the January simulation. Volatile organic compound controls alone are found to have a small effect on ozone and PM2.5, a less than linear effect on decreasing aldehydes, and an approximately linear effect on acrolein and benzene in summer, but a slightly larger than linear effect on aldehydes and acrolein in winter. These simulations indicate the difficulty in assessing how toxic air pollutants might respond to emission reductions aimed at decreasing criteria pollutants such as ozone and PM2.5.  相似文献   

3.
In 1995, Taiwan's Environmental Protection Administration (EPA/TW) instituted a policy of levying emission taxes on polluters in order to combat the rampant national issue of pollution. Since that time, pollution control strategies, tightening exhaust emission standards for industry, improvements in fuel quality, and new stricter vehicle emission standards, etc., have been implemented. This study evaluates the effectiveness of these measures and examines the improvement of Taiwan's air quality. In this paper, we conduct a detailed analysis of change in the concentrations of pollutants (SO2, NOx and particulate matter [PM]) between two three-year periods (from 1996 to1998 and from 2000 to 2002). The pollution levels were generally lower in the latter period. Concentrations at 14 EPA/TW stations in central Taiwan were simulated and source apportionment analyses in three of Central Taiwan's largest cities were conducted using a trajectory transfer-coefficient air quality model. Correlation coefficients (r) between simulations and observations for the monthly means of the concentrations of SO2, NOx, PM2.5 and PM10 during the study periods at the 14 stations are 0.56, 0.63, 0.70 and 0.31, respectively. The sulfur control policy greatly reduced SO2 concentration island-wide, a stringent emission standard put into place for gasoline vehicles reduced NOx concentration along highways, and an emissions tax placed on construction sites, as well as a regular program for road-dust sweeping, reduced primary particulate matter. Among all of the pollution abatement policies implemented, the most effective method for reducing PM2.5 concentrations in the three largest cities involved the reduction of fine ammonium sulfate aerosols from point sources (56–63% of net PM2.5 reduction). The next largest reduction was attributed to a diminishment in primary PM2.5 emanating from point sources (27–56% of net PM2.5 reduction). Secondary particulate matter, especially sulfate, was reduced from distances up to 150 km leeward of major pollution point sources such as Taichung Power Plant.  相似文献   

4.
Abstract

The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998–2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

5.
The emissions of exhaust gases (NO x , SO2, VOCs, and CO2) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes (“at sea,” “maneuvering,” and “in port”) and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO2, VOCs, PM, and CO2 were highest (9.6?×?103, 374, 1.2?×?103, and 5.6?×?105 ton year?1, respectively) in 2008. In contrast, the annual NO x emissions were highest (11.7?×?103 ton year?1) in 2006 due mainly to the high NO x emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in “in port” mode. In addition, the largest fraction (approximately 45–67 %) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO2 and PM) in 2020 and 2050 are estimated to be 1.4–1.8 and 4.7–6.1 times higher than those in 2009 (base year), respectively.  相似文献   

6.
Several studies have investigated the health of children attending schools located near busy roads. In this study, we have measured personal exposure to traffic-related pollutants in children to validate exposure classification based on school location. Personal exposure to PM2.5, soot, NOx and NO2 was measured during four 48-h periods. The study involved 54 children attending four different schools, two of which were located within 100 m of a major road (one ring road and one freeway) and the other two were located at a background location in the city of Utrecht, The Netherlands. Outdoor monitoring was conducted at all school sites, during the personal measurements. A questionnaire was administered on time activity patterns and indoor sources at home. The outdoor concentration of soot was 74% higher at the freeway school compared to its matched background school. Personal exposure to soot was 30% higher. For NOx the outdoor concentration was 52% higher at the freeway school compared to its background school. The personal concentration of NOx was 37% higher for children attending the freeway school. Differences were smaller and insignificant for PM2.5 and NO2. No elevated personal exposure to air pollutants was found for the children attending the school near the ring road. We conclude that the school's proximity to a freeway can be used as a valid estimate of exposure in epidemiological studies on the effects of the traffic-related air pollutants soot and NOx in children.  相似文献   

7.
This paper evaluates the relative impact on air quality of harbour emissions, with respect to other emission sources located in the same area. The impact assessment study was conducted in the city of Taranto, Italy. This area was considered as representative of a typical Mediterranean harbour region, where shipping, industries and urban activities co-exist at a short distance, producing an ideal case to study the interaction among these different sources. Chemical and meteorological field campaigns were carried out to provide data to this study. An emission inventory has been developed taking into account industrial sources, traffic, domestic heating, fugitive and harbour emissions. A 3D Lagrangian particle dispersion model (SPRAY) has then been applied to the study area using reconstructed meteorological fields calculated by the diagnostic meteorological model MINERVE. 3D short term hourly concentrations have been computed for both all and specific sources. Industrial activities are found to be the main contributor to SO2. Industry and traffic emissions are mainly responsible for NOx simulated concentrations. CO concentrations are found to be mainly related to traffic emissions, while primary PM10 simulated concentrations tend to be linked to industrial and fugitive emissions. Contributions of harbour activities to the seasonal average concentrations of SO2 and NOx are predicted to be up to 5 and 30 μg m−3, respectively to be compared to a overall peak values of 60 μg m−3 for SO2 and 70 μg m−3 for NOx. At selected urban monitoring stations, SO2 and NOx average source contributions are predicted to be both of about 9% from harbour activities, while 87% and 41% respectively of total concentrations are predicted to be of industrial origin.  相似文献   

8.
Atmospheric particles are a major problem that could lead to harmful effects on human health, especially in densely populated urban areas. Chiayi is a typical city with very high population and traffic density, as well as being located at the downwind side of several pollution sources. Multiple contributors for PM2.5 (particulate matter with an aerodynamic diameter ≥2.5 μm) and ultrafine particles cause complicated air quality problems. This study focused on the inhibition of local emission sources by restricting the idling vehicles around a school area and evaluating the changes in surrounding atmospheric PM conditions. Two stationary sites were monitored, including a background site on the upwind side of the school and a campus site inside the school, to monitor the exposure level, before and after the idling prohibition. In the base condition, the PM2.5 mass concentrations were found to increase 15% from the background, whereas the nitrate (NO3?) content had a significant increase at the campus site. The anthropogenic metal contents in PM2.5 were higher at the campus site than the background site. Mobile emissions were found to be the most likely contributor to the school hot spot area by chemical mass balance modeling (CMB8.2). On the other hand, the PM2.5 in the school campus fell to only 2% after idling vehicle control, when the mobile source contribution reduced from 42.8% to 36.7%. The mobile monitoring also showed significant reductions in atmospheric PM2.5, PM0.1, polycyclic aromatic hydrocarbons (PAHs), and black carbon (BC) levels by 16.5%, 33.3%, 48.0%, and 11.5%, respectively. Consequently, the restriction of local idling emission was proven to significantly reduce PM and harmful pollutants in the hot spots around the school environment.

Implications: The emission of idling vehicles strongly affects the levels of particles and relative pollutants in near-ground air around a school area. The PM2.5 mass concentration at a campus site increased from the background site by 15%, whereas NO3? and anthropogenic metals also significantly increased. Meanwhile, the PM2.5 contribution from mobile source in the campus increased 6.6% from the upwind site. An idling prohibition took place and showed impressive results. Reductions of PM2.5, ionic component, and non-natural metal contents were found after the idling prohibition. The mobile monitoring also pointed out a significant improvement with the spatial analysis of PM2.5, PM0.1, PAH, and black carbon concentrations. These findings are very useful to effectively improve the local air quality of a densely city during the rush hour.  相似文献   

9.
Our study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods. This holiday effect can be applied to other countries with similar national or cultural holidays. Hourly and daily surface measurements of six major air pollutants from thirteen air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods were used. We documented evidence of a “holiday effect”, where air pollutant concentrations were significantly different between holidays (CNY) and non-holidays (NCNY), in the Taipei metropolitan area over the past thirteen years (1994–2006).The concentrations of NOx, CO, NMHC, SO2 and PM10 were lower in the CNY than in the NCNY period, while the variation in the concentration of O3 was reversed, which was mainly due to the NO titration effect. Similar differences in these six air pollutants between the CNY and NCNY periods were also found in the diurnal cycle and in the interannual variation. For the diurnal cycle, a common traffic-related double-peak variation was observed in the NCNY period, but not in the CNY period. Impacts of dust storms were also observed, especially on SO2 and PM10 in the CNY period. In the 13-year period of 1994–2006, decreasing trends of NOx and CO in the NCNY period implied a possible reduction of local emissions. Increasing trends of SO2 and PM10 in the CNY period, on the other hand, indicated a possible enhancement of long-range transport. These two mechanisms weakened the holiday effect.  相似文献   

10.
Real-time chemical measurements have been made as part of a field study of air quality in the city and harbour of Cork, Ireland. The data relate to the year 2008, with particular attention paid to the period between May and August. Eight air quality parameters were measured: NO, O3, NO2, SO2, EC, OC, particulate SO42? and PM2.5. The data have been used in a novel way involving wind and temporal averaging, along with Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF) methodologies to extrapolate major source contributions for PM2.5. It is demonstrated that continuous monitoring of standard air quality parameters, such as NO, NO2, SO2, along with EC, OC and particulate SO42?, can be used to provide relevant, cost-effective initial estimates of source contributions to ambient PM2.5 levels. It is also shown that the benefit of including OC and particulate SO42? in the monitoring protocol is considerable. Three major source groups of ambient PM2.5 mass in Cork were identified and quantified using this combined monitoring and modelling approach; road transport (19%), domestic solid fuel burning (14%) and oil-fired domestic and industrial boilers, including power generation plants (31%).  相似文献   

11.
The annual air quality standard of NO2 is often exceeded in urban areas near heavy traffic locations. Despite significant decrease of NOx emissions in 1986–2005 in the industrial and harbour area near Rotterdam, NO2 concentrations at the urban background remain at the same level since the end of the nineties. Trend analysis of monitoring data revealed that the ozone/NOx equilibrium is a more important factor than increasing direct NO2 emissions by traffic. The latter has recently been identified as an additional NO2 source due to the introduction of oxy-catalytic converters in diesel vehicles and the growing number of diesel vehicles. However, in Rotterdam over the period 1986–2005 direct NO2 emissions by road traffic only increased 3–4%. Due to the importance of the ozone/NOx equilibrium, it is concluded that local NOx emissions in Rotterdam need substantial reduction to achieve lower NO2 urban background levels. This is a relatively costly abatement strategy and, therefore, a “hotspot” approach aiming at reducing NOx emissions by local traffic measures is more effective to meet European air quality standards.  相似文献   

12.
We have developed a model for evaluating the mass-based concentrations of urban particulate matter. The basic model assumption is that local vehicular traffic is responsible for a substantial fraction of the street-level concentrations of both PM10 and NOx, either due to primary emissions or resuspension from street surfaces. The modelling system utilises the data from an air quality monitoring network in the Helsinki Metropolitan Area. We have determined linear relationships between the measured urban PM10 data against those of NOx in various urban surroundings, based on continuously measured hourly concentration values. The data was obtained from two stations in central Helsinki and one suburban station in the Helsinki Metropolitan Area during a period of 3 yr, from 1996 to 1998. The model also includes a treatment of the regional background concentrations, and resuspended particulate matter. The model performance was evaluated against the measured PM10 data from the above-mentioned three stations and from two other stations, using data that was measured in 1999. We used two alternative model versions, one based on separate correlation parameters (PM10 vs. NOx) for each station, and another based on parameters averaged over the stations considered. We analysed the agreement between the measured and predicted hourly concentration time series, utilising the values of the fractional bias (FB) and the so-called index of agreement (IA). As expected, the model predicts relatively well the yearly mean concentrations of PM10: the FB values range from −0.05 to +0.09. Model performance is also relatively good when predicting the yearly mean values that are classified separately for each hour of the day: the corresponding IA values range from 0.85 to 0.96. However, model performance is substantially worse in predicting the hourly time series of the year: the IA values using the station-specific parameters range from 0.46 to 0.65. The model was applied in evaluating the yearly average spatial concentration distribution of PM10 in central Helsinki, based on the corresponding modelled NOx concentrations. With re-evaluation of a few parameters that can be determined empirically, the model could be evaluated, and most probably applied, in other urban areas as well.  相似文献   

13.
Spread of air pollution sources and non-uniform mixing conditions in urban or regional air sheds often result in spatial variation of pollutant concentrations over different parts of the air sheds. A comprehensive understanding of this variation of concentrations is imperative for informed planning, monitoring and assessment in a range of critical areas including assessment of monitoring network efficiency or assessment of population exposure variation as a function of the location in the city. The aims of this work were to study the citywide variability of pollutants as measured by “urban background” type monitoring stations and to interpret the results in relation to the applicability of the data to population exposure assessments and the network efficiency. A comparison between ambient concentrations of NOx, ozone and PM10 was made for three stations in the Brisbane air shed network. The best correlated between the three stations were ozone concentrations followed by NOx concentration, with the worst correlations observed for PM10. With a few exceptions correlations of all pollutants between the stations were statistically significant. Marginally better were the correlations for the lower concentrations of pollutants that represent urban background, over the correlations for higher concentrations, representing peak values. Implications of these findings on application of the monitoring data to air-quality management, as well as the need for further investigations has been discussed.  相似文献   

14.
An investigation into road transport exhaust emissions in the Genoa urban area was performed by comparing the quantities of carbon monoxide (CO), nitrogen oxides (NOx), nitrogen dioxide (NO2) and particulate matter (PM) emitted by different vehicle categories with air quality measurements referred to the same pollutants. Exhaust emissions were evaluated by applying the PROGRESS (computer PROGramme for Road vehicle EmiSSions evaluation) code, developed by the Internal Combustion Engines Group of the University of Genoa, to eight different years (from 1992 to 2010), considering spark ignition and Diesel passenger cars and light duty vehicles, heavy duty vehicles and buses, motorcycles and mopeds. Changes in terms of vehicles number, mileage and total emissions are presented together with relative distributions among the various vehicle categories. By comparing 1992 and 2010 data, calculated trends show a 7% increase in the number of vehicles, with total mileage growing at a faster rate (approx. 22%); total emissions decrease considerably, by approximately 50% for NOx and PM, 70% for HC and 80% for CO, due to improvements in engines and fuels forced by the stricter European legislation and the fleet renewal, while primary NO2 emission will be very close to 1992 level, after a decrease of about 18% in 2000.Air quality was analysed by selecting traffic and background measuring stations from the monitoring network managed by the Environmental Department of the Province of Genoa: average annual concentrations of considered pollutants from 1994 to 2007 were calculated in order to obtain the relative historical trends and compare them with European public health limits and with road vehicle emissions. Though an important reduction in pollutant concentrations has been achieved as a consequence of cleaner vehicles, some difficulties in complying with present and/or future NO2 and PM10 limits are also apparent, thus requiring suitable measures to be taken by the local authorities.  相似文献   

15.
Bursa is one of the largest cities of Turkey and it hosts 17 organized industrial zones. Parallel to the increase in population, rapidly growing energy consumption, and increased numbers of transport vehicles have impacts on the air quality of the city. In this study, regularly calibrated automatic samplers were employed to get the levels of air pollution in Bursa. The concentrations of CH4 and N-CH4 as well as the major air pollutants including PM10, PM2.5, NO, NO2, NOx, SO2, CO, and O3, were determined for 2016 and 2017 calendar years. Their levels were 1641.62?±?718.25, 33.11?±?5.45, 42.10?±?10.09, 26.41?±?9.01, 19.47?±?16.51, 46.73?±?16.56, 66.23?±?32.265, 7.60?±?3.43, 659.397?±?192.73, and 51.92?±?25.63 µg/m3 for 2016, respectively. Except for O3, seasonal concentrations were higher in winter and autumn for both years. O3, CO, and SO2 had never exceeded the limit values specified in the regulations yet PM10, PM2.5, and NO2 had violated the limits in some days. The ratios of CO/NOx, SO2/NOx, and PM2.5/PM10 were examined to characterize the emission sources. Generally, domestic and industrial emissions were dominated in the fall and winter seasons, yet traffic emissions were effective in spring and summer seasons. As a result of the correlation process between Ox and NOx, it was concluded that the most important source of Ox concentrations in winter was NOx and O3 was in summer.  相似文献   

16.
Although the growths of ambient pollutants have been attracting public concern, the characteristic of the associations between air pollutants and mortality remains elusive. Time series analysis with a generalized additive model was performed to estimate the associations between ambient air pollutants and mortality outcomes in Shenzhen City for the period of 2012–2014. The results showed that nitrogen dioxide (NO2)-induced excess risks (ER) of total non-accidental mortality and cardiovascular mortality were significantly increased (6.05% (95% CI 3.38%, 8.78%); 6.88% (95% CI 2.98%, 10.93%), respectively) in interquartile range (IQR) increase analysis. Also, these associations were strengthened after adjusting for other pollutants. Moreover, similar associations were estimated for sulfur dioxide (SO2), particulate matter with an aerodynamic diameter of <10 μm (PM10), and total non-accidental mortality. There were significant higher ERs of associations between PM10 and mortality for men than women; while there were significant higher ERs of associations between PM10/NO2 and mortality for elders (65 or elder) than youngers (64 or younger). Season analyses showed that associations between NO2 and total non-accidental mortality were more pronounced in hot seasons than in warm seasons. Taken together, NO2 was positively associated with total non-accidental mortality and cardiovascular mortality in Shenzhen even when the concentrations were below the ambient air quality standard. Policy measures should aim at reducing residents’ exposure to anthropogenic NO2 emissions.  相似文献   

17.
A long-term study of measurement of concentration of NOx, SO2 and TSP pollutants have been done in a port and harbour region in India. Monthly measurements of gaseous and particulate pollutants were made at six monitoring stations from January 1997 to December 2000. Meteorological data was also simultaneously collected. In this study, the relationship between monitored ambient air quality data and meteorological factors, such as wind speed, temperature, is statistically analysed, using the SPSS package. The monthly mean concentrations of NOx, SO2 and TSP were in the range of 19.5–59.0 μg/m3, 8.6–51.3 μg/m3 and 88.2–199.3 μg/m3, respectively. The results show that TSP is strongly correlated with NOx and SO2 with a correlation coefficient of 0.83 and 0.82, respectively. The correlation coefficients for TSP, NOx, and SO2 with wind are –0.78, –0.78, and –0.88, respectively.  相似文献   

18.
The Turkish Straits, i.e. Istanbul (Bosphorus) and Canakkale (Dardanellen), which connect Black Sea and Aegean Sea, have a continuously increasing maritime traffic. Especially, the maritime traffic on Bosphorus (Istanbul Strait) that connects the continents of Europe and Asia is too complex due to geographical conditions. The maritime traffic in the Turkish Straits includes the ships, which are in use in domestic transport, the transit passing ships with various aims and fishing, sport or strolling ships. In this paper, fuel consumption and exhaust gas emissions NOx, CO, CO2, VOC, PM exhausted from ships such as transit vessels, which are passing both Bosphorus and Dardanellen, and passenger ships used in domestic transport on the Bosphorus are calculated. In order to do this the general characteristics, the main engine systems, the fuel types, cruising times and speeds of all vessels are taken into consideration. The calculated NOx emissions on the Bosphorus are 2720 t from domestic passenger ships and 4357 t from transit ships. In this case it is clear that the transit ships cause more than half of the total amount of emissions from ships on the Bosphorus. The amount of nitrogen oxide emissions from domestic passenger ships used for public transport in Istanbul Strait is equal to approx. 4% of nitrogen oxide emissions from motor vehicles in Istanbul. Finally, the future emissions from ships in Turkish Straits are discussed.  相似文献   

19.
The purpose of this work is to contribute to the understanding of the photochemical air pollution in central-southern of the Iberian Peninsula, analysing the behaviour and variability of oxidant levels (OX?=?O3?+?NO2), measured in a polluted area with the highest concentration of heavy industry in central Spain. A detailed air pollution database was observed from two monitoring stations. The data period used was 2008 and 2009, around 210,000 data, selected for its pollution and meteorological statistics, which are very representative of the region. Data were collected every 15 min, however hourly values were used to analyse the seasonal and daily ozone, NO, NO2 and OX cycles. The variation of OX concentrations with NO x is investigated, for the first time, in the centre of the Iberian Peninsula. The concentration of OX was calculated using the sum of a NO x -independent ‘regional’ contribution (i.e. the O3 background), and a linearly NO x -dependent ‘local’ contribution. Monthly dependence of regional and local OX concentration was observed to determine when the maximum values may be expected. The variation of OX concentrations with levels of NO x was also measured, in order to pinpoint the atmospheric sources of OX in the polluted areas. The ratios [NO2]/[OX] and [NO2]/[NO x ] vs. [NO x ] were analysed to find the fraction of OX in the form of NO2, and the possible source of the local NO x -dependent contribution, respectively. The progressive increase of the ratio [NO2]/[OX] with [NO x ] observed shows a greater proportion of OX in the form of NO2 as the level of NO x increases. The higher measured values in the ratio [NO2]/[NO x ] should not be attributed to NO x emissions by vehicles; they could be explained by industrial emission, termolecular reactions or formaldehyde and HONO directly emitted by vehicles exhausts. We also estimate the rate of NO2 photolysis, J NO2?=?0.18–0.64 min?1, a key atmospheric reaction that influence O3 production and then the regional air quality. The first surface plot study of annual variation of the daily mean oxidant levels, obtained for this polluted area may be used to improve the atmospheric photochemical dynamic in this region of the Iberian Peninsula where there are undeniable air quality problems.  相似文献   

20.
The ambient PM10 and PM2.5 data collected during the fall and winter portions of the 1995 Integrated Monitoring Study (IMS95) were used to conduct Chemical Mass Balance (CMB) Modeling to determine source contribution estimates. Data from the core and saturation monitoring sites provided an extensive database for evaluating the spatial and temporal variations of contributing sources. Geological sources dominated fall samples, while secondary ammonium nitrate and carbonaceous sources were the largest contributors for winter samples. Secondary ammonium nitrate concentrations were uniform across all sites during both the fall and winter. Site-to-site variability was primarily due to differences in geological contributions in the fall, and carbonaceous source contributions in the winter. During the winter, diurnal profiles of particulate matter (PM) were driven by variations in carbonaceous sources at urban sites, and by variations in secondary ammonium nitrate at rural sites. Although records of day-specific PM activities were recorded during the study, no correlation was observed between 24-h CMB results and specific activities. The ambient data collected during IMS95 was also used to evaluate the adequacy of the emissions inventory. Comparison of ambient and emissions based ratios of NMHC/NOx, PM/NOx, CO/NOx, and SOx/NOx suggested that emissions of NMHC and CO in some locations may be underestimated, while emissions for PM and SOx may be overestimated. Comparison of fractional primary CMB source contribution estimates to corresponding fractional emissions estimates indicated that geological sources were overemphasized in the inventory, while carbonaceous sources were underrepresented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号