首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

2.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

3.
PM2.5 aerosols were collected in Nanjing, a typical mega-city in China, during summer and winter 2004 and were characterized for aromatic and cyclic compounds using a GC/MS technique to understand the air pollution problem. They include polycyclic aromatic hydrocarbons (PAHs), hopanes, phthalates and hydroxy-PAHs (OH-PAHs). PAHs, hopanes and OH-PAHs presented higher concentrations in winter (26–178, 3.0–18, and 0.013–0.421 ng m−3, respectively) than in summer (12–96, 1.6–11, and 0.029–0.171 ng m−3, respectively) due to an enhanced coal burning for house heating and atmospheric inversion layers developed in the cold season. In contrast, phthalates are more abundant in summer (109–368 ng m−3, average 230 ng m−3) than in winter (33–390 ng m−3, average 170 ng m−3) due to an enhanced evaporation from plastics during the hot season and the subsequent deposition on the pre-existing particles. Generally, all the identified compounds showed higher concentrations in nighttime than in daytime due to inversion layers and increased emissions from heavy-duty trucks at night. PAHs, hopanes and phthalates in Nanjing aerosols are 5–100 times more abundant than those in Los Angeles, USA, indicating a serious air pollution problem in the city. Concentrations of OH-PAHs are 1–3 orders of magnitude less than their parent PAHs and comparable to those reported from other international cities. Source identification using diagnostic ratios of the organic tracers suggests that PAHs in Nanjing urban area are mainly derived from coal burning, whereas hopanes are more attributable to traffic emissions.  相似文献   

4.
《Chemosphere》2011,82(11):1517-1525
The importance of the annual and seasonal trends associated to the polycyclic aromatic hydrocarbons (PAHs) biomonitoring by pine needles are studied with a comprehensive use of univariate and multivariate analysis tools. For this purpose, four pine needle sampling campaigns (winter, spring, summer and autumn 2007) were carried out in 29 sites from Portugal. Needles from Pinus pinaster Ait. and Pinus pinea L. trees were collected from all year-classes available in each tree, corresponding to the different shoots of needles coming out every spring and the results of both species were treated separately. Annual trends of polycyclic aromatic hydrocarbons (PAHs) contamination indicate a general increase from the least to the most exposed year-classes, for all seasons. The mean values for the sum of 16 PAHs ranged from 71 ± 33 ng g−1 (dry weight – dw) for new year (2007) needles in the summer to 514 ± 317 ng g−1 (dw) for 2-year needles (2005) in the spring for P. pinea, and between 90 ± 50 ng g−1 (dw) for new year (2007) needles in the summer and 1212 ± 436 ng g−1 (dw) for 3-year needles (2004) in summer for P. pinaster. The seasonal evolution shows the highest concentrations in the winter, then declining to the lowest levels in the summer and rising again from summer to autumn. Principal component analysis confirmed differences between seasons and needle year-classes, more visible for P. pinea samples. The cooler seasons have more affinity towards the lighter more abundant PAHs, as do the older needles. Differences between both pine species are also evident.  相似文献   

5.
An on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry (SFE–LC–GC–MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25–0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m−3 (24 h sampling). The linearity was excellent from 5 to 300 ng (R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE–LC–GC–MS method were comparable with those for Soxhlet and shake-flask extractions with GC–MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m−3, while total PAH concentrations varied from 0.81 to 5.68 ng m−3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10−3% in July to 15.0×10−3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.  相似文献   

6.
7.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

8.
Fifty-five seasonal PM2.5 samples were collected March 2003–January 2004 at Changdao, a resort island located at the demarcation line between Bohai Sea and Yellow Sea in Northern China. Changdao is in the transport path of the continental aerosols heading toward the Pacific Ocean in winter and spring due to the East Asia Monsoon. Solvent-extractable organic compounds (SEOC), organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) were analyzed for source identification based on molecular markers. This data set provides useful information for the downstream site researchers of the Asian continental outflow. Total carbon (TC, OC+EC) was ∼18 μg m−3 in winter, ∼9 μg m−3 in spring and autumn and a large part of the TC was WSOC (33% in winter, >45% in the other seasons). Winter and spring were the high SEOC seasons with n-fatty acids the highest at ∼290 and ∼170 ng m−3, respectively, followed by n-alkanes at ∼210 and ∼90 ng m−3, and polycyclic aromatic hydrocarbons (PAHs) were also at high at ∼120 and ∼30 ng m−3. High WSOC/TC, low C18:1/C18 of fatty acids, and low concentrations of labile PAHs such as benzo(a)pyrene, together with back trajectory analysis suggested that the aerosols were aged and transported. PAHs, triterpane and sterane distributions provided evidence that coal burning was the main source of the continental outflow. The detection of levoglucosan and β-sitosterol in nearly all the samples showed the impact of biomass burning.  相似文献   

9.
Membrane-enclosed copolymer (MECOPs) samplers containing crystalline copolymers of ethylvinylbenzene-divinylbenzene in polyethylene membranes were used to assess the influence of a steel complex on the level and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in ambient air. MECOPs were deployed at six sites in Pohang, Korea for 37 days (August 9, 2005–September 14, 2005). Fluorene, phenanthrene, anthracene, and fluoranthene were dominant PAHs with the highest contribution of phenanthrene (59%) to the total amount of vapor-phase PAHs. The spatial distribution of total PAHs in the vapor phase ranging from 76 to 1077 ng MECOP−1 and air dispersion modeling suggested that the steel complex was the major PAH source in Pohang. It was revealed that the major wind directions rather than the distance from the steel complex were a significant factor affecting the levels of PAHs at the sampling sites. Finally, we tried to convert MECOP concentrations (ng MECOP−1) to air concentrations (ng m−3) with the modified sampling rates (m3 day−1). This study demonstrates again that passive air samplers are useful tools for spatially resolved and time-integrated monitoring of semivolatile organic compounds (SOCs) in ambient air.  相似文献   

10.
《Chemosphere》2012,86(11):1734-1741
Perfluorooctanoic acid (PFOA) has long been an environmental contaminant of concern owing to its potential health risk. However, exposure to perfluorinated carboxylic acids (PFCAs) other than PFOA is not well understood. In this study, we investigated the concentrations of PFCAs in vacuum cleaner dust in Japan to measure the PFCAs contamination in an indoor environment. Most of the 77 samples contained PFCAs with 6–13 carbon atoms. The median concentration of perfluorononanoic acid (PFNA, 23.2 ng g−1) was highest among PFCAs, followed by PFOA (20.8 ng g−1) and perfluoroundecanoic acid (PFUnDA, 12.9 ng g−1). The 90th percentile concentrations of PFNA, PFUnDA and perfluorotridecanoic acid (PFTrDA) were 948, 283 and 110 ng g−1, respectively, and these were detected at greater concentrations than neighboring, even-numbered PFCAs. The proportion of long-chain PFCAs in vacuum cleaner dust from Japan was relatively higher than those reported for other countries. Factor analysis showed three independent factors. Odd-numbered long chain PFCAs (PFNA, PFUnDA and PFTrDA), which can correspond to factor 1, were major components of PFCAs in vacuum cleaner dust. Short chain PFCAs (factor 2) and even numbered long chain PFCAs (factor 3) were also statistically separated. These findings suggest that there are several sources of PFCAs with different origins in indoor environment. Further investigations into the origins of PFCAs are needed to evaluate indoor contamination with PFCAs.  相似文献   

11.
An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200–350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm−3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t−1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41–3700 μg ITEQ t−1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91–414 μg kg−1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018–0.5 μg Nm−3) were below the Italian limit of 10 μg Nm−3.  相似文献   

12.
Surface soil and passive air samples from a network of 23 sampling sites across Costa Rica were analyzed for polycyclic aromatic hydrocarbons (PAHs), allowing for an evaluation of absolute levels, spatial distribution patterns, air/soil concentration (A/S) ratios and relative composition. Annual mean concentrations of four-ring PAHs in air were low (median of approximately 40 pg m−3), except in Costa Rica's densely populated central valley (approximately 650 pg m−3). PAH concentrations in soil were also low (median of 5 ng g−1 dry weight) and comparable to those reported for other tropical regions. These low soil concentrations result in A/S ratios of four-ring PAHs in Costa Rica that are higher than the equilibrium air–soil partitioning coefficients and also higher than A/S ratios reported for temperate locations. A series of model calculations of increasing complexity were used to seek an explanation for variable A/S ratios of PAHs under tropical and temperate conditions. Temperature-driven changes in air–soil partitioning and differences in PAH degradability under temperate and tropical conditions are insufficient to explain the higher soil concentrations and lower A/S ratios in temperate regions. However, these can be explained by atmospheric deposition of PAHs during historical periods of much higher emissions and air concentrations and by persistence of PAHs in soils on the order of decades. Low PAH concentrations in tropical soils were found to be consistent with constant or increasing emissions, and in particular, do not require that degradation rates in soil are much faster than in temperate areas. In comparison to temperate soils, soils from Costa Rica and other tropical regions have a higher relative abundance of the lighter PAHs. This likely reflects a higher source contribution from biomass burning in the tropics, as well as the preferential loss of lighter PAHs from temperate soils that experienced high PAH deposition in the past.  相似文献   

13.
Long-term surface observations indicate that soil dust represents over 30% of the annual fine (particle diameter less than 2.5 μm) particulate mass in many areas of the western US; in spring and summer, it represents an even larger fraction. There are numerous dust-producing playas in the western US, but surface dust aerosol concentrations in this region are also influenced by dust of Asian origin. This study examines the seasonality of surface soil dust concentrations at 15 western US sites using observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network from 2001 to 2004. Average soil concentrations in particulate matter less than 10 μm in diameter (PM10) were lowest in winter and peaked during the summer months at these sites; however, episodic higher-concentration events (>10 μg m−3) occurred in the spring, the time of maximum Asian dust transport to the western US. Simulated surface dust concentrations from the Navy Aerosol Analysis and Prediction System (NAAPS) suggested that long-range transport from Asia dominates surface dust concentrations in the western US in the spring, and that, although some long-range transport does occur throughout the year (1–2 μg m−3), locally generated dust plays a larger role in the region in summer and fall. However, NAAPS simulated some anomalously high concentrations (>50 μg m−3) of local dust in the fall and winter months over portions of the western US. Differences between modeled and observed dust concentrations were attributed to overestimation of total observed soil dust concentrations by the assumptions used to convert IMPROVE measurements into PM10 soil concentrations, lack of inhibition of model dust production in snow-covered regions, and lack of seasonal agricultural sources in the model.  相似文献   

14.
An investigation on PAH in the atmospheric particulate matter of the city of Naples has been carried out. Urban atmospheric particulate matter was sampled in three sampling sites (West, East and central areas of the city), whose characteristics were representative of the prevailing conditions. In each site, 24 h samplings for 7 consecutive days were performed during three sampling campaigns, in 1996–1997. The results were comparable with those reported in literature for similar investigations. Total PAH were in the range 2–130 ng m−3, with a seasonal variation (autumn/winter vs. summer) in the range 1.5–4.5. The relative contribution of diesel engines vs. gasoline fuelled engines was evidenced.  相似文献   

15.
Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg−1 (of dry wood burned)), carbon monoxide (CO) (120 g kg−1) and fine particle mass (PM1) (2.7 g kg−1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9–9 g kg−1 TVOC, 28–68 g kg−1 CO and 0.6–1.6 g kg−1 PM1. The emission of 12 PAHs (PAH12) from the sauna stove was 164 mg kg−1 and consisted mainly of PAHs with four benzene rings in their structure. PAH12 emission from other appliances was, on average, 21 mg kg−1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) were measured in the Baltimore and adjacent Chesapeake Bay in July 1997. Time series of 4- and 12-h samples were taken at two sites 15 km apart in order to evaluate the influence of a number of processes on the short-term variability of PAH in the Baltimore and northern Chesapeake Bay atmospheres. PAH concentrations were 2–3-fold higher in the Baltimore atmosphere than in the adjacent Chesapeake Bay atmosphere. For example, gas-phase phenanthrene and pyrene concentrations were 12.5 and 2.14 ng m−3 in the Baltimore site and 5.57 and 0.548 ng m−3 in the Chesapeake Bay, respectively. The influence of wind direction, wind speed and temperature was evaluated by multiple linear regressions which indicated that atmospheric gas-phase PAH concentrations over the Chesapeake Bay were significantly higher when the air mass was from the urban/industrial Baltimore area. Furthermore, the increase of gas-phase low-MW PAH concentrations with temperature and wind speed suggests that volatilization from the bay is an important source of pollutants to the atmosphere, at least when air masses are not influenced by the Baltimore urban and industrial area. Indeed, while on the long-term, the Chesapeake Bay is a receptor of atmospherically deposited PAHs, on the short-term and during appropriate meteorological conditions, the bay acts as a source of pollutants to the atmosphere. Aerosol-phase PAH concentrations and temporal trends showed a strong dependence on aerosol soot content due to the high affinity of PAHs to the graphitic structure of soot. These results confirm the important influence of urban areas as a source of pollution to adjacent aquatic environments and as a driving factor of the short-term variability, either directly by transport of urban-generated pollutants or by volatilization of previously deposited pollutants. Conversely, the complex diurnal trends of gas-phase PAHs at the Baltimore site suggests that degradation processes dominate the diurnal trends of PAHs in urban atmospheres. This conclusion is supported by estimated rate constants for PAH reaction with OH radicals which show good agreement with reported values within a factor of two.  相似文献   

17.
PM10 aerosols at McMurdo Station, Antarctica were sampled continuously during the austral summers of 1995–1996 and 1996–1997. PM10 (particles with aerodynamic diameters less than 10 μm) mass concentrations at Hut Point, located less than 1 km from downtown McMurdo, averaged 3.4 μg m−3, more than an order of magnitude lower than the USEPA annual average National Ambient Air Quality Standard (NAAQS) of 50 μg m−3. Concentrations of methanesulfonate and nitrate were similar to those measured at other Antarctic coastal sites. Non-sea-salt sulfate (NSS) concentrations on Ross Island were higher than those found at other coastal locations. The average elemental carbon concentration (129 ng m−3) downwind of the station was two orders of magnitude higher than those measured at remote coastal and inland Antarctic sites during summer. Average sulfur dioxide concentrations (746 ng m−3) were 3–44 times higher than those reported for coastal Antarctica. Concentrations of Pb and Zn were 17 and 46 times higher than those reported for the South Pole. A methanesulfonate to biogenic sulfate ratio (R) of 0.47 was derived that is consistent with the proposed temperature dependence of R.  相似文献   

18.
A 12 month study of urban concentrations of total suspended particulates (TSP) and 20 polycyclic aromatic hydrocarbons (PAH) was carried out in Seoul (South Korea), Hong Kong, Bangkok (Thailand), Jakarta (Indonesia) and Melbourne (Australia). Concentrations of particulate matter in the atmosphere varied widely between the cities over the course of the study, ranging from a low of 24.1 μg m−3 in Melbourne during the winter to a high of 376.2 μg m−3 in Jakarta during the dry season. Seasonal variations in both TSP and PAH were observed in the tropical cities in the study with higher concentrations during the dry season and lower concentrations during the wet season. TSP and PAH concentrations are correlated with each other in these cities, suggesting that they have related sources and sinks for these cities. In the temperate cities of Melbourne and Seoul, PAH concentrations were higher during the cold winter season and lower during the warm summer. However, TSP was quite variable over the years in these latter cities and no clear seasonal trend was observed. A number of factors have been investigated which could be contributing to seasonal variations in pollutant levels. In the temperate climates, increased emissions due to the use of fossil fuels for heating in the winter is evident. However, an interrogation of the database with respect to the other factors such as (1) increased photolytic degradation during the summer, (2) transport of pollutants from other sources, (3) removal of PAH via wet deposition and in-cloud scavenging mechanisms and (4) volatilisation of lower molecular weight species during periods of high temperature indicates the importance of multiple processes. Even though there are clearly much lower levels of both particulates and PAH in the wet season of the tropical climates, no statistically significant correlations have been observed between rainfall levels and pollutant concentrations.  相似文献   

19.
《Chemosphere》2010,78(11):1558-1568
Polar bears (Ursus maritimus) feed mainly on ringed seal (Phoca hispida) and consume large quantities of blubber and consequently have one of the highest tissue concentrations of organohalogen contaminants (OHCs) worldwide. In East Greenland, studies of OHC time trends and organ system health effects, including reproductive, were conducted during 1990–2006. However, it has been difficult to determine the nature of the effects induced by OHC exposures on wild caught polar bears using body burden data and associated changes in reproductive organs and systems. We therefore conducted a risk quotient (RQ) evaluation to more quantitatively evaluate the effect risk on reproduction (embryotoxicity and teratogenicity) based on the critical body residue (CBR) concept and using a physiologically-based pharmacokinetic (PBPK) model. We applied modelling approaches to PCBs, p,p′-DDE, dieldrin, oxychlordane, HCHs, HCB, PBDEs and PFOS in East Greenland polar bears based on known OHC pharmacokinetics and dynamics in laboratory rats (Rattus rattus). The results showed that subcutaneous adipose tissue concentrations of dieldrin (range: 79–1271 ng g−1 lw) and PCBs (range: 4128–53 923 ng g−1 lw) reported in bears in the year 1990 were in the range to elicit possible adverse health effects on reproduction in polar bears in East Greenland (all RQs  1). Similar results were found for PCBs (range: 1928–17 376 ng g−1 lw) and PFOS (range: 104–2840 ng g−1 ww) in the year 2000 and for dieldrin (range: 43–640 ng g−1 lw), PCBs (range: 3491–13 243 ng g−1 lw) and PFOS (range: 1332–6160 ng g−1 ww) in the year 2006. The concentrations of oxychlordane, DDTs, HCB and HCHs in polar bears resulted in RQs < 1 and thus appear less likely to be linked to reproductive effects. Furthermore, sumRQs above 1 suggested risk for OHC additive effects. Thus, previous suggestions of possible adverse health effects in polar bears correlated to OHC exposure are supported by the present study. This study also indicates that PBPK models may be a supportive tool in the evaluation of possible OHC-mediated health effects for Arctic wildlife.  相似文献   

20.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号