首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A generalised additive modelling (GAM) approach is used to model daily concentrations of nitrogen oxides (NOX), nitrogen dioxide (NO2), carbon monoxide (CO), benzene and 1,3-butadiene at a busy street canyon location in central London. The models were developed for the period July 1998–June 2005 using appropriate meteorological and road traffic covariates. For all models, the complex and localised wind-flow patterns resulting from the street canyon location of the monitoring site, which can be difficult to model deterministically, have a large influence on the model predictions. It is shown that GAMs built using simple covariates explain a large amount of the daily variation for these pollutants (mean r2=0.86). It is found that concentrations of benzene and 1,3-butadiene have declined in line with detailed calculations of emissions trends, with some evidence to suggest that reductions in benzene have been greater than estimated reductions in emissions. Although measured concentrations of NOX have declined from 1998 to 2005, much of the decline appears to be associated with reductions in overall traffic and meteorological factors rather than reduced emissions of NOX. Unadjusted NOX trends show a 28.6% reduction (95% confidence interval from 21.2% to 35.8%) from 1998 to 2005, whereas meteorologically adjusted trends show a 19.3% decline (95% confidence interval from 14.8% to 23.5%) over this period. Analysis shows that there were a higher number of occasions in the early part of the time series that led to strong recirculation of exhaust emissions and higher NOX concentrations at this location, thus affecting observed trends in concentration.  相似文献   

2.
In 1997, a measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki. Hourly mean concentrations of CO, NOx, NO2 and O3 were measured at street and roof levels, the latter in order to determine the urban background concentrations. The relevant hourly meteorological parameters were measured at roof level; these included wind speed and direction, temperature and solar radiation. Hourly street level measurements and on-site electronic traffic counts were conducted throughout the whole of 1997; roof level measurements were conducted for approximately two months, from 3 March to 30 April in 1997. CO and NOx emissions from traffic were computed using measured hourly traffic volumes and evaluated emission factors. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx (fractional bias were −4.2 and +4.5%, respectively), but the model overpredicted the measured NO2 concentrations (fractional bias was +22%). The agreement between the measured and predicted values was also analysed in terms of its dependence on wind speed and direction; the latter analysis was performed separately for two categories of wind velocity. The model qualitatively reproduces the observed behaviour very well. The database, which contains all measured and predicted data, is available for further testing of other street canyon dispersion models. The dataset contains a larger proportion of low wind speed cases, compared with other available street canyon measurement datasets.  相似文献   

3.
Local air quality management requires the use of screening and advanced modelling tools that are able to predict roadside pollution levels under a variety of meteorological and traffic conditions. So far, more than 200 air pollution hotspots have been identified by local authorities in the UK, many of them associated with NO2 and/or PM10 exceedences in heavily trafficked urban streets that may be classified as street canyons or canyon intersections. This is due to the increased traffic-related emissions and reduced natural ventilation in such streets. Specialised dispersion models and empirical adjustment factors have been commonly used to account for the entrapment of pollutants in street canyons. However, most of the available operational tools have been validated using experimental datasets from relatively deep canyons (H/W⩾1) from continental Europe. The particular characteristics of low-rise street canyons (H/W<1), which are a typical feature of urban/sub-urban areas in the UK, have been rarely taken into account.The main objective of this study is to review current practice and evaluate three widely used regulatory dispersion models, WinOSPM, ADMS-Urban 2.0 and AEOLIUS Full. The model evaluation relied on two comprehensive datasets, which included CO, PM10 and NOx measurements, traffic information and relevant meteorological data from two busy street canyons in Birmingham and London for a 1-year period. The performance of the selected models was tested for different times of the day/days of the week and varying wind conditions. Furthermore, the ability of the models to reproduce roadside NO2/NOx concentration ratios using simplified chemistry schemes was evaluated for one of the sites. Finally, advantages and limitations of the current regulatory street canyon modelling practice in the UK, as well as needs for future research, have been identified and discussed.  相似文献   

4.
NOx and NO2 concentrations were measured at different locations in a city centre of an urban zone (Population 450 000) in order to study the variation of the outdoor exposure at pedestrian level. These measurements were carried out to understand the influence of traffic emissions at each measured site. The observations were done during four weeks in winter, including several days with high pollution levels. The results at different locations have been used to analyse criteria recommended for locating observation sites in a monitoring network. No large differences in background pollution averaged over several weeks have been found throughout the city centre, even during pollution peaks. Measurements were also carried out inside one street canyon. The contribution of the street traffic to the NO=NOx−NO2 concentrations observed at side-walk has been found important, i.e., several times the background level. On the other hand, the majority of observed NO2 pollution is due to the contribution of background pollution within the street. The pollutant excess at pedestrian level is strongly correlated to the street traffic emission and to the atmospheric turbulence observed at roof level. Application of a box model to the street data demonstrates that such models can be useful to estimate the pollutant accumulation within the street.  相似文献   

5.
基于2008年及2009年分4个季节对北京市3种类型道路(开阔型、交叉路口型和峡谷型)空气中的NOx的现场监测结果,分析了3种类型道路空气中NOx的污染现状和时空变化规律及影响因素。实验结果表明,昼间北京市各类型街道空气中NOx浓度呈早晚浓度高、中午浓度低的变化规律,NOx浓度随季节和车流量变化较明显。交通道路空气中NO占NOx的分担率高,且有较好的相关性,而NO2分担率较低,与NOx相关性较差。  相似文献   

6.
A field measurement campaign was conducted near a major road in southern Finland from September 15 to October 30, 1995. The concentrations of NO, NO2 and O3 were measured simultaneously at three locations, at three heights (3.5, 6 and 10 m) on both sides of the road. Traffic densities and relevant meteorological parameters were also measured on-site. We have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI, used in combination with a meteorological pre-processing model MPP-FMI. In comparison with corresponding results presented previously in the literature, the agreement of measured and predicted datasets was good, as measured using various statistical parameters. For all data (N=587), the index of agreement (IA) was 0.83, 0.82 and 0.89 for the measurements of NOx, NO2 and O3, respectively. The IA is a statistical measure of the correlation of the predicted and measured time series of concentrations. However, the modelling system overpredicts NOx concentrations with a fractional bias FB=+13%, and O3 concentrations with FB=+8%, while for NO2 concentrations FB=−2%. We also analyzed the difference between model predictions and measured data in terms of meteorological parameters. Model performance clearly deteriorated as the wind direction approached a direction parallel to the road, and for the lowest wind speeds. The range of variability concerning atmospheric stability, ambient temperature and the amount of solar radiation was modest during the measurement campaign. As expected, no clear dependencies of model performance were therefore detected in terms of these parameters. The experimental dataset is available for the evaluation of other roadside dispersion models.  相似文献   

7.
Quasi-continuous measurements of NOx, CO and C5–C12 hydrocarbons made during the MEDCAPHOT-TRACE experiment in a street canyon with heavy traffic load were used to estimate the CO/NOx and 36 individual NMHC/NOx traffic emission ratios in the Athens basin. A traffic emission inventory has been compiled for Athens and aspects of this inventory were tested against measurements. The results indicate that although the main features of the 9:00 to 15:00 variations of the NMHC/NOx and CO/NOx inventory emission ratios are in agreement with observations, during the rest of the day the fine structure of the variations of these ratios cannot be accurately predicted by the inventory. Comparison of pollutant emission ratios derived from ambient measurements with emission ratios predicted by existing inventories for Athens reveals serious discrepancies. Further, the experimental results and theoretical considerations indicate that the speciation of evaporative emissions changes with increasing ambient temperature in favour of the most volatile HC species, thus changing the speciation of traffic emissions during the course of the day. This is an aspect that is not taken into account in present urban photochemical modelling inventories.  相似文献   

8.
Reactive pollutant dispersion in an urban street canyon with a street aspect ratio of one is numerically investigated using a computational fluid dynamics (CFD) model. The CFD model developed is a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 is considered in the presence of background O3 and street bottom heating (ΔT=5 °C) with an ambient wind perpendicular to the along-canyon direction. A primary vortex is formed in the street canyon and the line connecting the centers of cross-sectional vortices meanders over time and in the canyon space. The cross-canyon-averaged temperature and reactive pollutant concentrations oscillate with a period of about 15 min. The averaged temperature is found to be in phase with NO and NO2 concentrations but out of phase with O3 concentration. The photostationary state defect is small in the street canyon except for near the roof level and the upper downwind region of the canyon and its local minimum is observed near the center of the primary vortex. The budget analysis of NO (NO2) concentration shows that the magnitude of the advection or turbulent diffusion term is much larger (larger) than that of the chemical reaction term and that the advection term is largely balanced by the turbulent diffusion term. On the other hand, the budget analysis of O3 concentration shows that the magnitude of the chemical reaction term is comparable to that of the advection or turbulent diffusion term. The inhomogeneous temperature distribution itself affects O3 concentration to some extent due to the temperature-dependent photolysis rate and reaction rate constant.  相似文献   

9.
It has recently been recognized that air and noise pollution constitutes an extended problem over the densely populated city of Buenos Aires. Traffic emissions are of paramount concern, especially along narrow and main traffic arteries. In spite of these considerations, few systematic studies have been undertaken to evaluate the air quality in the metropolitan area of the city. In 1996, concentrations of carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were simultaneously measured for the first time using a continuous monitoring station. This station was placed in a building at Belgrano Avenue, which is a heavy traffic street in the downtown area of the city (Bogo et al., Atmospheric Environment 33 (1999) 2587. In this work, we analyze the dependence of the measured primary pollutants, CO and the mixture of nitrogen oxides (NOx), with meteorological conditions, traffic emissions and monitoring location. We compare the registered values with the results obtained from modeling the dispersion of the pollutants emitted from mobile and area sources. We also discuss the relevance of street canyon effects compared with background concentrations of these pollutants.  相似文献   

10.
We have developed a modelling system for predicting the traffic volumes, emissions from stationary and vehicular sources, and atmospheric dispersion of pollution in an urban area. This paper describes a comparison of the NOx and NO2 concentrations predicted using this modelling system with the results of an urban air quality monitoring network. We performed a statistical analysis to determine the agreement between predicted and measured hourly time series of concentrations at four permanently located and three mobile monitoring stations in the Helsinki Metropolitan Area in 1996–1997 (at a total of ten urban and suburban measurement locations). At the stations considered, the so-called index of agreement values of the predicted and measured time series of the NO2 concentrations vary between 0.65 and 0.82, while the fractional bias values range from −0.29 to +0.26. In comparison with corresponding results presented in the literature, the agreement between the measured and predicted datasets is good, as indicated by these statistical parameters. The seasonal variations of the NO2 concentrations were analysed in terms of the relevant meteorological parameters. We also analysed the difference between model predictions and measured data diagnostically, in terms of meteorological parameters, including wind speed and direction (the latter separately for two wind speed classes), atmospheric stability and ambient temperature, at two monitoring stations in central Helsinki. The modelling system tends to overpredict the measured NO2 concentrations both at the highest (u⩾6 m s−1) and at the lowest wind speeds (u<2 m s−1). For higher wind speeds, the modelling system overpredicts the measured NO2 concentrations in certain wind direction intervals; specific ranges were found for both monitoring stations considered. The modelling system tends to underpredict the measured concentrations in convective atmospheric conditions, and overpredict in stable conditions. The possible physico-chemical reasons for these differences are discussed.  相似文献   

11.
The concentrations of air pollutants such as nitrogen oxides and ozone characterised by very fast chemical reactions can significantly vary within urban street-canyon due to the short distances between sources and receptor. With the primary objective to analyse this issue, NO, NO2, NOx, O3, BTX, and wind flow field were continuously measured for 1 week at two heights (a street-level yard and a 25-m-high rooftop) in an urban canyon in Suzhou (China). The yard ozone concentrations were found to be up to six times lower than on the roof. Different frequency distributions (FD), dynamical and chemical processes of the pollutant variations from yard to roof are discussed to explain the findings. The predominant factors for the dissimilar pollutant vertical diffusion at the two measurement locations were associated to dissimilar fluid-dynamic and heterogeneous removal effects that likely induced dissimilar ozone chemical processes relative to NOx and BTX precursors.  相似文献   

12.
In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k? turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.  相似文献   

13.
We have developed a model for evaluating the mass-based concentrations of urban particulate matter. The basic model assumption is that local vehicular traffic is responsible for a substantial fraction of the street-level concentrations of both PM10 and NOx, either due to primary emissions or resuspension from street surfaces. The modelling system utilises the data from an air quality monitoring network in the Helsinki Metropolitan Area. We have determined linear relationships between the measured urban PM10 data against those of NOx in various urban surroundings, based on continuously measured hourly concentration values. The data was obtained from two stations in central Helsinki and one suburban station in the Helsinki Metropolitan Area during a period of 3 yr, from 1996 to 1998. The model also includes a treatment of the regional background concentrations, and resuspended particulate matter. The model performance was evaluated against the measured PM10 data from the above-mentioned three stations and from two other stations, using data that was measured in 1999. We used two alternative model versions, one based on separate correlation parameters (PM10 vs. NOx) for each station, and another based on parameters averaged over the stations considered. We analysed the agreement between the measured and predicted hourly concentration time series, utilising the values of the fractional bias (FB) and the so-called index of agreement (IA). As expected, the model predicts relatively well the yearly mean concentrations of PM10: the FB values range from −0.05 to +0.09. Model performance is also relatively good when predicting the yearly mean values that are classified separately for each hour of the day: the corresponding IA values range from 0.85 to 0.96. However, model performance is substantially worse in predicting the hourly time series of the year: the IA values using the station-specific parameters range from 0.46 to 0.65. The model was applied in evaluating the yearly average spatial concentration distribution of PM10 in central Helsinki, based on the corresponding modelled NOx concentrations. With re-evaluation of a few parameters that can be determined empirically, the model could be evaluated, and most probably applied, in other urban areas as well.  相似文献   

14.
The CALINE4 roadway dispersion model has been applied to concentrations of NOx and NO2 measured near Gandy Boulevard in Tampa, FL (USA) during May 2002. A NOx emission factor of 0.86 gr mi−1 was estimated by treating NO+NO2 (NOx) as a conserved species and minimizing the differences between measured and calculated NOx concentrations. This emission factor was then used to calculate NO2 concentrations using the NO/NO2 transformation reactions built into CALINE4. A comparison of measured and calculated NO2 concentrations indicates that for ambient O3 concentrations less than 40 ppb the model under-predicts the chemical transformation of NO. The enhanced transformation of NO may be due to reactions of NO with oxidants such as peroxy radicals that are present either in the atmosphere or in vehicle exhaust.  相似文献   

15.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

16.
CO and NOx measurements from mobile sources at two urban locations in Córdoba City, Argentina, were used to develop a very simple method to estimate emission from these sources. This development was possible because primary urban air pollution in Córdoba comes mostly from mobile sources and because a field measurement campaign was conducted by the city government during 1995–1996 that has allowed us to have a complete and valuable data bank. Air concentrations of CO, NOx as well as physical, and meteorological variables were measured at two urban sites with two monitoring stations. We compared the measured CO and NOx air concentration data with the predictions of a method that uses regression analysis to estimate the emission factor from the mobile sources. The agreement is good, considering the simplicity of the approach.  相似文献   

17.
An analysis is presented of continuous simultaneous measurement data for PM10 and PM2.5 using TEOM instruments from five sites in the United Kingdom. The results are analysed specifically in relation to the sources and processes influencing the coarse particle fraction (2.5–10 μm). The data show a generally strong correlation between fine and coarse particle concentrations at all sites, with a generally higher proportion of coarse particles in the dryer months of the year. The one rural site shows a notably lower proportion of coarse particles than the urban and suburban sites. Whilst it is possible to disaggregate the coarse particle concentrations into a component which is diluted by increasing windspeed and a component which increases with windspeed and is hence possibly attributable to wind-induced resuspension processes, the latter is only a minor proportion of the total coarse particle concentration. There are appreciable weekday-to-weekend and day-to-night differences between coarse particle concentrations which are most marked at the urban sites indicative of anthropogenic activities being a source of coarse particles. The clearest indication of the likely predominant source of coarse particles arises from an analysis of a data set derived from an urban street canyon site after subtraction of measurements from a nearby urban background location. The data indicate strong relationships of both fine and coarse incremental particle concentrations in the street canyon with incremental NOx. If incremental fine particles and coarse particles are attributed to exhaust emissions and vehicle-induced resuspension, respectively, then it may be concluded that vehicle-induced resuspension provides a source strength approximately equal to that of exhaust emissions. An analysis of the coarse particle concentration data suggest that episodes of elevated coarse particle concentrations alone very rarely lead to exceedence of the UK air quality standard for PM10 of 50 μg m−3 measured as a 24-h running mean.  相似文献   

18.
Efficient methods are developed for modeling emissions – air quality relationships that govern ozone and NO2 concentrations over very long periods of time. A baseline model evaluation study is conducted to assess the accuracy and speed with which the relationship between pollutant emissions and the frequency distribution of O3 concentrations throughout the year can be computed along with annual average NO2 values using a deterministic photochemical airshed model driven by automated objective analysis of measured meteorological parameters. Methods developed are illustrated by application to the air quality situation that exists in Southern California. Model performance statistics for O3 are similar to the results obtained in previous short-term episodic model evaluation studies that were based on hand-crafted meteorological inputs that are supplemented by expensive field measurement campaigns. Model predictions at one of the highest NO2 concentration sites in the US indicate that measured violation of the US annual average NO2 air quality standard at that site occurs because other species such as HNO3 and PAN are measured as if they were NO2 by the chemiluminescent NOx monitors in current use.  相似文献   

19.
Data from environmental-chamber studies and photochemical box-model simulations were used to evaluate and revise a method for developing a qualitative understanding of the sensitivity of ozone formation at a particular time and place to changes in concentrations of volatile organic compounds (VOC) and oxides of nitrogen (NOx). The revised method requires measurements of ozone, NO, and either NOx or NOy. The sensitivities of the method to biases in measurements were evaluated. The method potentially can be used for qualitative assessment of VOC versus NOx limitation, comparison with the predictions of grid-based photochemical air-quality models, and evaluation of trends over time in the relative effectiveness of VOC versus NOx controls.  相似文献   

20.
Detecting and quantifying abnormal changes in the concentration of urban air pollutants can be difficult due to the influence of meteorology and atmospheric chemistry. This study presents methods to detect and characterise small changes in the concentration of nitrogen dioxide (NO2) that deviate from expected behaviour. Generalized additive models (GAMs) are used to describe daily mean NO2 concentrations at roadside monitoring sites to determine how concentrations deviate from measured concentrations. Structural change methods are applied to time series describing this difference to identify change-points, where concentrations of NO2 deviate significantly from expected behaviour. Methods are also used which quantify the timing and uncertainty associated in the timing of these change-points. For most time series data considered in London, concentrations of NO2 underwent relatively abrupt changes rather than smoothly varying increases; changes which remain largely undetected in raw time series data. Most change-points occurred in late 2002 or early 2003, and the factors, which may have contributed to them, are discussed. These methods can also identify technical problems with monitoring equipment and are applicable to other instances where detecting sudden atmospheric composition change is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号