首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
作为典型的非金属半导体光催化剂,类石墨相氮化碳(g-C3N4)由于具有物理化学性质稳定、能带结构适宜、制备成本低廉等优势,近年来受到广泛关注.本文综述了石墨相氮化碳的基本结构特性、常用制备方法以及结构改性策略,对其在水处理中的应用进行了总结,并对g-C3N4未来的发展趋势进行了展望,以期为氮化碳新材料开发及其在水处理方...  相似文献   

2.
近年来,纳米零价铁(nZVI)因具有比表面积大、还原能力强、成本低的特点被用于去除环境中的六价铬〔Cr(Ⅵ)〕,然而由于高表面能、固有磁力等因素的影响,nZVI具有易团聚、易氧化和不稳定的缺点,限制了其广泛应用. 鉴于此,本文以碳材料作为支持材料改性nZVI,比较了制备碳基nZVI复合材料的方法,分析了不同碳基nZVI复合材料去除Cr(Ⅵ)的反应效能,阐述了影响复合材料去除Cr(Ⅵ)的因素. 结果表明:①湿化学法合成的复合材料有利于提高nZVI的分散性,减少团聚. 热转化法合成的复合材料有利于节约成本,提高碳材料和nZVI的结合性. ②不同碳材料负载nZVI能有效提高nZVI的分散性、稳定性和抗氧化性. ③碳基材料负载nZVI能有效降低环境因素对nZVI的负面影响. ④碳基nZVI复合材料能提高对Cr(Ⅵ)的去除能力,其对Cr(Ⅵ)的最大吸附容量比nZVI高1.2~20倍. 本文旨在深入了解碳基nZVI复合材料的合成方法,提高碳基nZVI复合材料的性能,以期为开发高效稳定的碳基nZVI复合材料修复环境中的Cr(Ⅵ)提供一些启示.   相似文献   

3.
碳达峰碳中和是我国的重大战略决策,对推进产业转型升级和绿色发展具有重要意义. 实现经济增长与资源能源消耗、污染物和碳排放的总量与强度双控制,是推进“双碳”目标的重要支撑. 我国沿海地区制造业发达,污染物和碳排放量较大,寻找减污降碳协同增效路径对区域绿色转型具有重大现实意义. 本文以浙江省宁波市为对象,对全部经济门类的产业结构开展实证研究,运用多准则决策模型和情景分析法,以能源、水资源、4种主要污染物(化学需氧量、氨氮、二氧化硫、氮氧化物)和二氧化碳为约束条件建立了产业结构优化调整模型,将各产业增加值占比的变化程度作为决策变量,筛选出产业结构调整平稳、减排幅度大的调整方案. 制造业作为宁波市经济发展的主体,贡献了较高比例的污碳排放和能源资源消耗. 4.5%、5.5%、6.5%三种年均经济增速情景下宁波市通过产业结构调整实现减污降碳协同增效的潜力分析显示,2020—2030年预期可实现累计97%的经济增长,且能满足区域资源环境的约束限制. 面向2030年提出宁波市产业结构优化调整路径,建议严格控制高排放制造业的准入门槛,提升第一产业和采矿业的资源能源利用效率,推进电力、热力的生产与供应业等存量行业的减污降碳,鼓励发展高附加值的第三产业和循环经济产业.   相似文献   

4.
非光合CO2同化微生物菌群的选育/优化及其群落结构分析   总被引:4,自引:2,他引:2  
通过从海水及其沉积物中分离、筛选,并结合电子供体和无机碳源结构的优化以期获得不用光照与供氢的高效固碳微生物菌群;通过16S rDNA序列分析、比对等手段研究非光合固碳微生物菌群的结构,以期为优化群落配置,进一步提升固碳效率提供理论依据.结果显示,通过分离和长期驯化可从海洋中得到在普通好氧、厌氧条件下具有固碳能力的非光合微生物菌群.添加硫代硫酸钠、硫化钠和氢气作为电子供体可有效提升菌群的固碳效率,在以硫代硫酸钠为电子供体的好氧、厌氧条件下,该菌群的CO2同化效率分别可达10.44 mg/L和12.56 mg/L.该固碳菌群对混合无机碳源的同化效率显著高于单一碳源,在以CO2、碳酸氢钠及碳酸钠为混合碳源情况下,菌群好氧、厌氧固碳效率(以CO2计)分别可达110 mg.(L.d)-1,和72mg.(L.d)-1,接近氢氧化细菌的水平.微生物群落结构分析结果表明,添加不同电子供体后,固碳微生物菌群的优势种发生了显著变化,在发现的16个优势菌种中,11个是不可培养微生物,即其只能以共生方式存在.菌群混合培养时的固碳效率可能是多种菌共同作用的结果,因此优化固碳微生物菌群的结构和配比将有利于其固碳效率的进一步提升.  相似文献   

5.
张静  杨萌  张伟  曹东  赵静  李勃  薛英岚  蒋洪强 《环境科学》2024,45(3):1285-1292
电力行业实现二氧化碳排放尽早达峰并加快脱碳进度,对河南省实现碳达峰碳中和目标具有重要意义.基于碳排放-能源集成模型(iCEM),对河南电力行业“双碳”目标下控煤降碳路径开展情景研究.结果表明,综合考虑电源结构优化和技术进步等措施,河南省电力行业碳排放将于2028~2033年实现碳达峰,电力行业煤炭消费量在“十四五”期间仍呈持续增长趋势,达峰区间为2027~2031年.大力发展以风电和太阳能为主的清洁能源,采用更多低碳零碳热源、提高外调电比例、加大煤电节能改造是碳达峰目标约束下河南省控煤主要措施.碳中和阶段,布局内陆核电是缓解河南省控煤压力与实现“双碳”目标的重要路径之一,需要提前开展论证研究.加速推进落后机组淘汰和现役机组节能改造、加速发展非化石能源发电、超前规划外调电,并配套完善煤电退出和调峰的市场机制、增加系统灵活性、加快外引清洁能源保障等政策,是河南省电力行业控煤降碳路径有效的政策保障.  相似文献   

6.
湿地作为全球最大的碳库之一,在全球碳循环中发挥着重要作用.而湿地碳库受到温度、降水量等环境因子的影响,所以评估多种环境因子的交互作用,对于深入理解和预测湿地生态系统不同碳库(植物、土壤和土壤微生物量)的碳储量变化至关重要.基于对42例1999-2019年发表文献研究数据的Meta分析,讨论了多种环境因子对湿地碳库的影响...  相似文献   

7.
废弃植物生物质热解制备为生物质炭是碳源整合再利用的有效手段之一,既能减少生物质自然分解过程中CO2排放,同时,生物质炭还田还可通过调控微生物活动和碳源利用效率来减少土壤本底有机碳矿化.此外,生物质炭对土壤通气性的改善有利于CH4氧化;其多孔结构、高比表面积等性能有利于CO2及可溶性有机碳等易损耗碳源的吸附固定,促进土壤有机碳的固持,增加土壤碳库容量和质量.在农田生态系统中合理施加生物质炭有利于提高植物光合固碳能力、增加植物生物量和作物产量,具有环境和经济双重效益.因此,生物质炭可借助土壤和植物两条途径助力农田生态系统中碳的减排增汇.然而,生物质炭的内源性污染物、异质性和持久性等导致其很可能具有长期的生态环境风险,仍需深入而广泛的研究.环境友好型生物质炭的制备、生物质炭的因地制宜策略等仍然是亟待解决的难题.未来研究建议在生物质炭促生增碳的相关机理、生物质炭的长期生态效应、生物质炭基“智慧土壤”的研发以及生物质炭制备工艺标准化和生产规模化等方面加强,实现生物质资源的高效整合与绿色应用,以期助力生物质炭还田技术的推广,更好地服...  相似文献   

8.
人工造林对碳的截留:热带工业用材林的作用   总被引:1,自引:0,他引:1  
与温带地区相比,热带地区林木对碳的截留更快,这是由于其优越的气候条件所致,但是,热带地区碳的净截留量远比实际碳的同化量要少,因为大部分的木材基本上作为燃料被消耗了。另一方面,利用木材制砀氏、纸浆和胶合板等耐用产品不会巴把吸收的碳归还大气。在温带,作为工业原材料的木材资源极丰富,因此木材加工业大部分集中在这一地区,主要在西欧、斯堪的纳维亚和北美。在亚洲、非洲和拉丁美洲,尽管具有适宜树木生长的优越自然  相似文献   

9.
尽早实现碳达峰、碳中和是中国推动经济社会全面绿色低碳转型的内在需求,开展碳达峰路径研究对中国合理制定2030年碳达峰目标和措施具有重大现实意义.该文筛选发表于2015—2020年间的18篇文献,采用Meta回归分析方法研究中国碳达峰路径及主要影响因素.结果表明:①多数文献预测中国将于2030年或2030年前实现碳达峰,平均预测峰值水平约10.9 Gt CO2;碳达峰时煤炭占比平均值为51.9%,非化石能源占比平均值为22.4%,经济年增长率平均值为5.4%,碳排放强度下降率平均值为54.0%.②该文筛选的样本对碳达峰路径预测结果与中国2030年前碳达峰目标一致,文献发表时间越晚预测的达峰时间越早且峰值越高.③除碳达峰时碳排放强度下降率(peakCEI)外,其余变量均对碳达峰峰值具有显著性;除文献类型(PTY)、影响因子(IF)、碳达峰时煤炭占比分类(yblcoal)、碳达峰时非化石能源占比(pnf)外,其余变量均对碳达峰时间具有显著性.未来中国应从基于成本效益的最优达峰路径、完善温室气体清单核算方法、大力推动清洁能源技术进步、提高经济发展质量等方面开展深入研究.   相似文献   

10.
中国典型城市固体废物可降解有机碳含量的测定与研究   总被引:8,自引:2,他引:6  
城市固体废物填埋处理产生的甲烷是一种重要的温室气体,城市固体废物中可降解有机碳(DOC)含量是计算其甲烷排放量的重要因子之一.1996年IPCC指南给出了不同可降解有机碳的公式和不同类型固体废物可降解有机碳缺省值.该缺省值主要来自发达国家的文献,不能完全适合中国的实际情况.选择武汉和沈阳作为我国南方和北方城市的代表,分别在其老城区、新建城区、综合市场、食品超市、垃圾填埋场等区域进行固体废物采样,经过化学分析得到代表城市干基和湿基固体废物的含水率、含碳量和可降解有机碳含量,并对其成分特征进行分析,得到中国城市固体废物可降解有机碳含量推荐值.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号