首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Experiments about the influence of ultrafine water mist on the methane/air explosion were carried out in a fully sealed visual vessel with methane concentrations of 8%, 9.5%, 11% and 12.5%. Water mists were generated by two nozzles and the droplets' Sauter Mean Diameters (SMD) were 28.2 μm and 43.3 μm respectively which were measured by Phase Doppler Particle Anemometer (PDPA). A high speed camera was used to record the flame propagation processes. The results show that the maximum explosion overpressure, pressure rising rate and flame propagation velocity of methane explosions in various concentrations increased significantly after spraying. Furthermore, the brightness of explosion flame got much higher after spraying. Besides, the mist with a larger diameter had a stronger turbulent effect and could lead to a more violent explosion reaction.  相似文献   

2.
In order to deeply understand the inhibitory effect of ultrafine water mist containing methane-oxidizing bacteria on methane explosion, a small-sized semi-closed visual experimental platform was built. Five different application mist amounts (0.7 mL, 2.1 mL, 3.5 mL, 4.9 mL, 6.3 mL) of ultrafine water mist containing methane-oxidizing bacteria on 9.5% methane explosion were studied experimentally. Ultrafine water mist was generated by the ultrasonic atomization generator, and mist size was measured by a winner319 laser particle size analyzer. During the methane explosion, a high-frequency pressure sensor collected pressure change data, and a high-speed camera recorded the flame development process. The results indicated that the maximum explosion overpressure (ΔPmax) decreased with time, and the arrival time of the maximum explosion overpressure (ΔPmax) delayed. The appearance time of the “tulip” shaped flame delayed, and the flame propagation speed decreased. The ultrafine water mist and deposition can effectively inhibit the methane explosion. The explosion suppression effect of the second step spraying water mist was better. The improvement of the explosion suppression effect of the ultrafine water mist containing methane-oxidizing bacteria was attributed to the degradation effect of the methane-oxidizing bacteria. Under long-term degradation, methane-oxidizing bacteria in water mist play a role in inhibiting methane explosion.  相似文献   

3.
为研究含NaCl添加剂超细水雾对甲烷爆炸的影响,在自制的半封闭透明管道内,进行含NaCl添加剂超细水雾抑制甲烷爆炸试验,通过检测和分析在不同NaCl浓度情况下超细水雾的粒径和甲烷爆炸的平均火焰传播速度、爆炸超压以及平均升压速率,探究NaCl浓度对超细水雾粒径及其对抑制甲烷爆炸有效性的影响。研究结果表明:NaCl浓度对超细水雾粒径影响较小;对于体积分数为9.5%的甲烷,相比于纯甲烷爆炸,其平均火焰传播速率、最大爆炸超压以及平均升压速率分别下降了53.7%,63.4%和60.7%,相比于超细纯水雾,其平均火焰传播速率、最大爆炸超压以及平均升压速率分别下降了38.6%,58%,56%;在通雾量相同的条件下,浓度为2.5%NaCl超细水雾对体积分数为9.5%的甲烷爆炸抑制性能最佳;含NaCl添加剂超细水雾的物理化学共同作用可以有效抑爆甲烷。  相似文献   

4.
In this study, in order to research the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct, a semi-confined transparent chamber was designed with the size of 120 × 120 × 840 mm, and the experiments were carried out with stoichiometric methane/air premixed mixture (fraction of methane: 9.5%), adding different fractions of nitrogen and ultrafine water mist. The experimental results showed the following: The combination of nitrogen and ultrafine water mist had a synergistic inhibiting effect on methane/air explosion, which was preferable to the single use of any kind. With the increase of spraying time of water mist and fraction of nitrogen, the initial shape of the explosion flame became snakelike, and at the same time the peak flame propagation speed and peak overpressure decreased significantly. When the nitrogen fraction was increased to 10% and the mist spraying time was increased to 2min, synergistic inhibiting effect on overpressure was high efficient. However, with the increase of spraying time of water mist and fraction of nitrogen going on, the amount of increase of explosion inhibition efficiency was gradually reduced.  相似文献   

5.
To further elucidate the influence mechanism of side vents on the dynamic characteristics of gas explosions in tubes is helpful to design more reasonable vent layouts. In this paper, 9.5% methane-air explosion experiments were conducted in a tube with two side-vented ducts, and the effects of vent layouts and vent areas on the dynamic characteristics of explosion overpressure and flame propagation speed were investigated. The results demonstrate that under the same condition with a single vent area of 100 mm × 100 mm, when only the end vent is open, the maximum explosion overpressure and the maximum flame propagation speed are the highest among the five vent layouts. When the side vents 1 and 2 and the end vent are open, the maximum explosion overpressure is the lowest, and an unusual discovery is that the flame front changes into a hemispherical shape, finger shape, quasi-plane shape, tulip shape and wrinkled structure. When only side vent 1 is open, a unique Helmholtz oscillation occurs, and a new discovery is that there is a consistent oscillation relationship among the overpressure, flame propagation speed and flame structure. Helmholtz oscillation occurs only when a single vent area is 100 mm × 100 mm–60 mm × 60 mm, and the oscillation degree decreases with decreasing vent area. During the vent failure stage, the maximum explosion overpressure is generated, the flame front begins to appear irregular shape, and the flame propagation speed shows a prominent characteristic peak. After the vent failure stage, the driving effect of the end vent on the flame is higher than that of the side vent on the flame. Furthermore, the correlation equations of the mathematical relationships among the maximum explosion overpressure Pred, the static activation pressure Pstat and the vent coefficient Kv under four vent layouts are established, respectively.  相似文献   

6.
In the present work, a series of experiments have been performed to analyze the explosion characteristics of ethanol-gasoline with various blended ratios (0%, 5%, 10%, 15%, 30%, 50%, 70%, 80%, and 100%). A vented rectangular vessel with a cross-section of 100 mm × 100 mm, 600 mm long and a 40 mm diameter vent on the top is used to carry out the experiments. The flame propagation is recorded by a phantom high-speed camera with 5000 fps, while the histories of the explosion overpressure are measured by two PCB pressure sensors and the explosion sound pressure level is obtained by a CRY sound sensor. The results indicate that the maximum overpressure and flame propagation speed increases linearly as the blended ratio increases when the initial volume of blended fuel is 1.0 mL; While the change of explosion overpressure and flame propagation speed shows a trend of decreasing at first and then increasing as the concentration increases to 1.8 mL. It is also found that the peak of the sound pressure level exceeds 100 dB under all tests, which would damage the human's hearing. What's more, relationships between explosion overpressure and sound pressure level are examined, and the change of the maximum overpressure can be reflected to some extent by the measurement of the maximum sound pressure level. The study is significant to reveal the essential characteristic of the explosion venting process of ethanol-gasoline under different initial blended ratios, and the results would help deepen the understanding of ethanol-gasoline blended fuels explosion and the assessment of the explosion hazardous.  相似文献   

7.
The explosion of the methane/air mixture and the methane/coal dust/air mixture under 40 J center spark ignition condition was experimentally studied in a large-scale system of 10 m3 vessel. Five pressure sensors were arranged in space with different distances from the ignition point. A high-speed camera system was used to record the growth of the flame. The maximum overpressure of the methane/air mixture appeared at 0.75 m away from the ignition point; the thickness of the flame was about 10 mm and the propagation speed of the flame fluctuated around 2.5 m/s with the methane concentration of 9.5%. The maximum overpressure of the methane/coal dust/air mixture appeared at 0.5 m. The flame had a structure of three concentric zones from outside were the red zone, the yellow illuminating zone and the bright white illuminating zone respectively; the thickness and the propagation speed of the flame increased gradually, the thickness of red zone and yellow illuminating zone reached 3.5 cm and 1 cm, the speed reached 9.2 m/s at 28 ms.  相似文献   

8.
To explore the inhibitory effects of CF3I and CO2 gas on the explosion pressure and flame propagation characteristics of 9.5% methane, a spherical 20 L experimental explosion device was used to study the effect of the gas explosion suppressants on the maximum explosion pressure, maximum explosion pressure rise rate and flame propagation speed of methane. The results indicated that with a gradual increase in the volume fraction of the gas explosion suppressant, the maximum explosion pressure of methane and maximum explosion pressure rise rate gradually decreased, and the time taken to reach the maximum explosion pressure and maximum explosion pressure rise rate was gradually delayed. At the same time, the flame propagation speed gradually decreased. Additionally, the time taken for the flame to reach the edge of the window and the time taken for a crack as well as a cellular structure to appear on the flame surface was gradually delayed. The fluid dynamics uncertainty was suppressed. The explosion pressure and flame propagation processes were markedly suppressed, but the flame buoyancy instability was gradually enhanced. By comparing the effects of the two gas explosion suppressants on the pressure and flame propagation characteristics, it was found that at the same volume fraction, trifluoroiodomethane was significantly better than carbon dioxide in suppressing the explosion of methane. By comparing the reduction rates of the characteristic methane explosion parameters at a volume fraction of 9.5%, it was observed that the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure was approximately 4.6 times that of the same amount of carbon dioxide, and the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure rise rate and flame propagation speed was approximately 2.7 times that of the same amount of carbon dioxide. The addition of 0.5%–1.5% trifluoromethane to 4% and 8% carbon dioxide can improve the explosion suppression efficiency of carbon dioxide. This enhancing phenomenon is a comprehensive manifestation of the oxygen-decreasing effect of carbon dioxide and the trifluoroiodomethane-related endothermic effect and reduction in key free radicals.  相似文献   

9.
The effect of internal shape of obstacles on the deflagration of premixed methane–air (concentration of 10%) was experimentally investigated in a semi-confined steel pipeline (with a square cross section size of 80 mm × 80 mm and 4 m long). The obstacles used in this study were circular, square, triangular and gear-shaped (4-teeth, 6-teeth and 8-teeth) orifice plates with a blockage ratio of 75%, and the perimeter of the orifice was regarded as a criterion for determining the sharpness of the orifice plate. The overpressure history, flame intensity histories, flame front propagation speed, maximum flame intensity and peak explosion overpressure were analyzed. The explosion in the pipeline can be divided into two stages: initial explosion and secondary explosion. The secondary explosion is caused by recoiled flame. The perimeter is positively related to the intensity of the recoiled flame and the ability of orifice plate to suppress the explosion propagation. In addition, the increase in the perimeter will cause the acceleration of the flame passing through the orifice plate, while after the perimeter of the orifice reaches a certain value, the effect of the increase in perimeter on explosion excitation becomes no obvious. The overpressure (static pressure) downstream of the orifice plate is the result of the combined effect of explosion intensity and turbulence. The increase in perimeter leads to the increase in turbulence downstream of the orifice plate which in turn causes more explosion pressure to be converted into dynamic pressure.  相似文献   

10.
To study the influence of the charge-to-mass ratio of a charged water mist on a methane explosion, the induction charging method was used to induce charge on a normal water mist; a mesh target method was employed to test the charge-to-mass ratio of its droplets. The propagation images, propagation average velocities, and overpressures of a methane explosion suppressed by charged water mist were analysed. The influence of the charge-to-mass ratio of the suppressant water mist on a methane explosion was studied. Results show that the explosion temperature, propagation average velocity, and peak overpressure deceased more obviously with charged water mist than ordinary water mist. With increasing charge-to-mass ratio, the suppression effect of the charged water mist underwent a significant increase. Under experimental conditions, compared with ordinary water mist, when the charge-to-mass ratio was 0.445 mC/kg and the mist flux was 4 L, the minimum flame propagation average velocity was 3.456 m/s, with a drop of 2.37 m/s (40.68%), and the peak overpressure of the methane explosion was 10.892 kPa, with a drop of 10.798 kPa (49.78%). The suppression effect is considered from the changes of the physico-chemical properties of the water mist as affected by the applied charge-to-mass ratio.  相似文献   

11.
In view of the invalidity of suppression and isolation apparatus for gas explosion, a closed vacuum chamber structure for explosion suppression with a fragile plane was designed on the base of the suction of vacuum. Using methane as combustible gas, a series of experiments on gas explosion were carried out to check the feasibility of the vacuum chamber suppressing explosion by changing methane concentration and geometric structure of the vacuum chamber. When the vacuum chamber was not connected to the tunnel, detonation would happen in the tunnel at methane volume fraction from 9.3% to 11.5%, with flame propagation velocity exceeding 2000 m/s, maximum peak value overpressure reaching 0.7 MPa, and specific impulse of shock wave running up to 20 kPa s. When the vacuum chamber with 5/34 of the tunnel volume was connected to the flank of the tunnel, gas explosion of the same concentration would greatly weaken with flame propagation velocity declining to about 200 m/s, the quenching distance decreasing to 3/4 of the tunnel length, maximum peak value overpressure running down to 0.1-0.15 MPa and specific impulse of shock wave below 0.9 kPa s. The closer the position accessed to the ignition end, the greater explosion intensity weakened. There was no significant difference between larger section and smaller vacuum chambers in degree of maximum peak value overpressure and specific impulse declining, except that quenching fire effect of the former was superior to the latter. The distance of fire quenching could be improved by increasing the number of the vacuum chambers.  相似文献   

12.
为了解CO2-超细水雾对瓦斯/煤尘爆炸抑制特性,用自行搭建的实验系统,从超压、火焰传播速度和火焰结构3个方面研究了CO2-超细水雾形成的气液两相介质对9.5%瓦斯/煤尘复合体系爆炸的抑爆效果、影响因素与原因。研究结果表明:随着CO2体积分数和超细水雾质量浓度的增加,爆炸火焰最大传播速度、爆炸超压峰值均出现明显下降,火焰到达泄爆口时间显著延迟;尤其当CO2体积分数达到14%与超细水雾的共同抑爆效果凸显,瓦斯/煤尘复合体系爆炸超压的“震荡平台”消失,同时火焰结构呈现“整体孔隙化”。所得结论为煤矿井下高效防爆抑爆技术进行了完善和增强。  相似文献   

13.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

14.
An experimental study has been conducted to investigate the effects of hydrogen addition on the fundamental propagation characteristics of methane/air premixed flames at different equivalence ratios in a venting duct. The hydrogen fraction in the methane–hydrogen mixture was varied from 0 to 1 at equivalence ratios of 0.8, 1.0 and 1.2. The results indicate that the tendency towards flame instability increased with the fraction of hydrogen, and the premixed hydrogen/methane flame underwent a complex shape change with the increasing hydrogen fraction. The tulip flame only formed when the fraction of hydrogen ranged from 0 to 50% at an equivalence ratio of 0.8. It was also found that the flame front speed and the overpressure increased significantly with the hydrogen fraction. For all equivalence ratios, the stoichiometric flame (Φ = 1.0) has the shortest time of flame propagation and the maximum overpressure.  相似文献   

15.
Study of flame distribution laws and the hazard effects in a tunnel gas explosion accident is of great importance for safety issue. However, it has not yet been fully explored. The object of present work is mainly to study the effects of premixed gas concentration on the distribution law of the flame region and the hazard effects involving methane-air explosion in a tube and a tunnel based on experimental and numerical results. The experiments were conducted in a tube with one end closed and the other open. The tube was partially filled with premixed methane-air mixture with six different premixed methane concentrations. Major simulation works were performed in a full-scale tunnel with a length of 1000 m. The first 56 m of the tunnel were occupied by methane–air mixture. Results show that the flame region is always longer than the original gas region in any case. Concentration has significant effects on the flame region distribution and the explosion behaviors. In the tube, peak overpressures and maximum rates of overpressure rise (dp/dt)max for mixtures with lower and higher concentrations are great lower than that for mixtures close to stoichiometric concentration. Due to the gas diffusion effect, not the stoichiometric mixture but the mixture with a slightly higher concentration of 11% gets the highest peak overpressure and the shock wave speed along the tube. In the full-scale tunnel, for fuel lean and stoichiometric mixture, the maximum peak combustion rates is achieved before arriving at the boundary of the original methane accumulation region, while for fuel rich mixture, the maximum value appears beyond the region. It is also found that the flame region for the case of stoichiometric mixture is the shortest as 72 m since the higher explosion intensity shortens the gas diffusion time. The case for concentration of 13% can reach up to a longest value of 128 m for longer diffusion time and the abundant fuel. The “serious injury and death” zone caused by shock wave may reach up to 3–8 times of the length of the original methane occupied region, which is the widest damage region.  相似文献   

16.
To investigate the suppression effect of charged water mist on gas explosion, a small charged water mist generator and a gas explosion simulation device were designed based on the principle of electrostatic induction. Experiments for testing characteristics of the gas explosion in a confined space under different charged polarities, charged voltages and mist fluxes were carried out. Experimental results indicated that, compared with the normal water mist, the explosion peak overpressure and the flame propagation speed could be more effectively reduced by the charged water mist. And this suppression effect could be promoted by increasing the charged voltage. To visualize the effect of the charged water mist's polarity on gas explosion, comparative experiments were conducted. The results showed that the explosion peak overpressure, the overpressure rising rate, and the propagation speed of the flame were reduced by 64.7%, 33.0% and 19.4%, respectively, when a +8 kV charged voltage was applied. In situation where a -8 kV charged voltage was applied, 64.1%, 26.5% and 16.0% reductions were achieved for the explosion peak overpressure, the overpressure rising rate, and the flame propagation speed respectively. Comparison of this data leads to the conclusion that the gas explosion could be more efficiently suppressed by the positively charged water mist.  相似文献   

17.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

18.
通过搭建长为20m、截面为0.08m×0.08m的非绝热开口钢管,研究了甲烷与空气预混气体发生爆炸后的火焰和压力发展特征。实验结果表明:火焰信号最强的时刻对应于火焰前锋反应区内某时刻,而火焰信号起始上升时刻与火焰前锋预热区起始时刻接近,应选择某点火焰信号起始上升时刻作为该点的火焰到达时间。随着远离点火源距离的增加,火焰厚度呈现先变薄后变厚的变化趋势,最大超压呈现先减小、后增大、再减小的趋势,火焰传播速度则呈先增大后减小的变化过程。非绝热开口钢管的实验条件对爆炸超压和火焰传播速度的影响较大。研究成果可为甲烷爆炸致灾机制及防控的研究提供参考。  相似文献   

19.
The flammability of refrigerants is a major cause of refrigerant explosion incidents. Studying the explosion characteristics of refrigerants at different initial temperatures can provide significant benefits for solving the safety problems of refrigerants under actual working conditions. This paper studied the effects of the initial temperature and refrigerant concentration on the explosion characteristics of refrigerant 2, 3, 3, 3-tetrafluoropropene (R1234yf) at 0.1 MPa. The curves of explosion characteristics with different initial temperature revealed the same variation trend ranged from 25 °C to 115 °C. Specifically, as the refrigerant concentration was raised, the peak overpressure, the maximum rate of pressure rise, and laminar burning velocity increased initially and decreased afterwards, along with maximum values at the refrigerant concentration of 7.6%. When the refrigerant concentration was 7.6%, the peak overpressure declined exponentially with the initial temperature rise, while the maximum rate of pressure rise increased linearly. The laminar burning velocity calculated from the spherical expansion method indicated that the flame propagation was gradually accelerated by the increase of initial temperature, which coincided with the change of the maximum rate of pressure rise. Meanwhile, experiments and CHEMKIN simulation results demonstrated the effects of elevated temperature from 20 °C to 50 °C on the explosion limits of R1234yf. The lower explosion limit reduced and the upper explosion limit increased with rising initial temperature. In general, R1234yf exhibited moderate combustion and lower explosion risk, compared with traditional refrigerants.  相似文献   

20.
Porous media has a significant effect on flame and overpressure of methane explosion. In this paper, the pore diameter and thickness of porous media are studied. Nine experimental combinations of different pore diameter and thickness on the propagation of flame and overpressure of methane explosion in a tube are analyzed. The results show that the porous media not only can suppress the explosive flame propagation, but the porous media with large pore diameter can cause deflagration and accelerate the transition of flame from laminar to turbulent. The pore diameter of the porous media mainly determines the quenching of the flame. Simply increasing the thickness of porous media may cause the flame to temporarily stop propagating, but the flame is not completely extinguished for larger pore diameter. However, the deflagration propagation speed of flame is affected by the thickness. The attenuation of overpressure by porous media is mainly reflected in reducing the duration of overpressure and the peak value of overpressure. The smaller the pore diameter, the greater the thickness, and the more remarkable the reduction in overpressure duration and peak value. Suitable pore diameter and thickness of porous media can effectively suppress flame propagation and reduce the maximum value and duration of overpressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号