首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王昶  张宗鹏  曾明 《环境工程》2015,33(12):49-53
采用均相Fenton高级氧化技术对苯甲酸废水进行降解,考察了p H值、H2O2投加量、Fe~(2+)的用量、苯甲酸溶液的初始浓度等因素对苯甲酸降解的影响。结果表明:在室温条件下,最佳初始pH=3,H_2O_2最佳的经济投加量(Qth)为12.3 mmol/L,Fe~(2+)最佳投加量为0.41 mmol/L(即c(H_2O_2)∶c(Fe~(2+))=30∶1);经60 min反应后,100 mg/L苯甲酸基本可完全去除,TOC去除率也可达41.9%以上;当苯甲酸浓度为200 mg/L时,TOC去除率最大,可达45.4%;当苯甲酸浓度高于200 mg/L时,可以采取分批投加H_2O_2的方式以获得较高的去除率。  相似文献   

2.
为了预处理化工厂的高氨氮废水,采用向废水中投加Na2HPO.412H2O和MgCl.26H2O生成磷酸铵镁(鸟粪石)的方法,以去除其中的高浓度氨氮同时获得缓释肥鸟粪石。试验以模拟氨氮废水为研究对象,研究了鸟粪石结晶法回收氨氮的影响因素:反应时间、氨氮初始浓度、pH值、磷酸盐与镁盐投加量对高氨氮废水的去除效果,然后进行不同影响因素的试验,确定了氨氮去除的最佳工艺条件。研究结果表明,鸟粪石结晶法回收氨氮的最佳工艺条件为:反应时间10 min,pH值为9,NH4-N:PO4-P:Mg摩尔比为1:1.05:1.15,NH4-N、PO4-P与Mg的去除率分别为91.52%、99.58%与90.52%;残余浓度分别为90.87、4.96与174.1 mg/L,加入的磷几乎全部回收,无二次污染。预处理的废水进入污水处理厂进一步深度处理。  相似文献   

3.
采用磷酸铵镁(MAP)沉淀法对高氨氮7-ACA综合废水进行了预处理试验研究,以Na2HPO4和MgCl2.6H2O作为沉淀剂,探讨了初始反应pH值、n(Mg2+):n(PO43-)/:n(NH4+)投配比及反应时间等因素对氨氮去除效果的影响。结合结晶物SEM分析,确定预处理的最佳工艺条件为:初始反应pH 9.0、n(Mg2+):n(PO43-):n(NH4+)投配比1.0:1.1:1和反应时间20 min。平行试验结果表明,在最佳工艺条件下,当进水氨氮浓度为1 020~1 190 mg/L时,处理后出水氨氮浓度为小于150.0 mg/L,氨氮去除率在85.0%以上,残磷量小于40.0 mg/L,为7-ACA综合废水的后续生化处理创造了有利条件。  相似文献   

4.
以CaO、MgO和白云石石灰(D-Lime)为晶种对模拟厌氧消化上清液进行磷回收试验,研究晶种投加量对磷去除效率的影响,分析试验反应动力学和产物表面形态。结果表明:磷浓度为0.645 mmol/L(ρ(P)=20 mg/L)、n(N)/n(P)为8:1、pH为7.80的模拟水中,投加一定量的CaO、MgO和D-Lime进行磷回收试验,磷的去除率在95%以上,试验反应过程符合准一级反应动力学。针对消化上清液中的高浓度常见离子CO32-,当c(CO32-)≥ 10 mmol/L时,其对CaO除磷具有明显抑制作用,而对D-Lime和MgO抑制作用有限。此外,投加晶种中含有Mg2+时会生成磷酸铵镁晶体(magnesium ammonium phosphate,MAP)。  相似文献   

5.
化学沉淀法处理高浓度氨氮废水工艺条件研究   总被引:5,自引:3,他引:2  
以Na2HPO4和MgSO4为沉淀剂,对氯化铵、硫酸铵、氨水以及碳酸氨等四种高浓度氨氮废水进行化学沉淀法脱氮处理。正交试验的结果表明,废水初始pH值是影响氨氮去除率最主要的因素,Mg2+和PO43+的投加量与废水中氨氮的比值也对氨氮去除率有重要影响。单因素试验进一步优化表明,对于此四种氨氮废水,当初始氨氮浓度为1500mg/L时,去除氨氮的最佳工艺条件为:pH10.1~10.5,Mg:N和P:N的比例分别为1.2~1.4和1.0~1.2,此时各废水中氨氮的去除率可达到93%~99%,磷的利用率达到97%以上。  相似文献   

6.
员建  徐楷  罗小平  苑宏英 《环境工程》2017,35(12):25-29
针对UV/H_2O_2对氯化消毒副产物三氯甲烷(TCM)和一溴二氯甲烷(DCBM)的去除效果及影响因素进行研究,结果表明UV/H_2O_2方法对TCM和DCBM去除效果的影响因素有过氧化氢(H_2O_2)投加量、紫外光照强度、反应p H值和反应物初始浓度。通过不同的反应条件得出:H_2O_2在一定投加量变化范围(10~35 mmol/L)内,随投加量的增加,TCM和DCBM的去除率均呈先上升后下降趋势,H_2O_2最佳投加量分别为25,20 mmol/L;增大紫外光照(UV)强度,TCM和DCBM的去除率均显著提高;随初始p H值的增大,去除率均呈先上升后下降趋势,p H值为7.0时,去除率达到最佳;TCM和DCBM反应初始浓度分别为150,160μg/L时,其去除率最高,在有效时间内去除率分别为95.88%、92.56%。  相似文献   

7.
通过磷酸铵镁沉淀(MAP)、壳聚糖(CTS)、聚合氯化铝(PAC)三元复配法混凝处理中山市某垃圾填埋场老龄渗滤液.结果表明,MAP法最佳作用pH值范围在8.5-9.5之间.当n(Mg2+):n(PO43-):n(NH4+)为12:1:09,即MgCl2·6H2O和Na2HPO4·12H2O的投加质量浓度分别为19.61g/L和25.90 g/L时,在渗滤液pH值=9.0条件下,可获得最为经济有效的脱氮效果.三元复配处理该老龄渗滤液效果明显,达到良好的协同效应,可使CODCr去除率达50%以上,脱色率和NH4+-N去除率均达到98%以上.  相似文献   

8.
Fenton试剂处理酸性玫瑰红B的研究   总被引:7,自引:0,他引:7  
采用Fenton试剂处理酸性玫瑰红B染料废水,考察了FeSO4投加量、H2O2投加量、pH值和反应时间对处理效果的影响,研究了原水的氧化还原电位和TOC的变化规律,评价了它的可生化性。结果表明,最佳pH值为3,FeSO4的适宜投加量为8mmol/L,H2O2最佳投加量为50mmol/L,此时COD去除率和脱色率分别为77.1%和92.8%,处理后该染料废水的可生化性大大提高。  相似文献   

9.
杨涛  张静  何帅  张悦  马天佑  杨开 《环境科学学报》2016,36(8):2838-2843
针对化学协同生物除磷过程,研究了序批式生物膜反应器(SBBR)中FeSO_4对悬浮相活性污泥脱氢酶活性(DHA)、胞外聚合物(EPS)及系统处理效果的影响.结果表明,少量FeSO_4对DHA和EPS的分泌具有促进作用,但最佳投加量不一致,分别为0.10 mmol·L-1和0.20 mmol·L-1;大量的FeSO_4则会引发抑制.FeSO_4投加量少于0.30 mmol·L-1时会使污泥MLVSS、MLVSS/MLSS增加,超过0.30 mmol·L-1时则使MLVSS、MLVSS/MLSS下降,但MLSS和SVI随着FeSO_4投加量的增加分别持续增加和下降.FeSO_4对COD和TN的去除具有抑制作用,但并不显著,去除率分别在77%和72%左右;TP的去除效果明显改善,在投加量为0.30 mmol·L-1时效果最好.投加FeSO_4协同生物除磷时建议最佳投加量为0.30 mmol·L-1,此时污泥DHA被轻微抑制,但污泥浓度、EPS、TP去除率均已达到最大,出水水质满足一级A排放标准.  相似文献   

10.
研究了As(Ⅲ)初始浓度、反应时间、铁粉投加量、初始p H以及溶液共存腐植酸(HA)、阴阳离子等影响因素对废铁屑吸附As(Ⅲ)的影响。结果表明,随着As(Ⅲ)初始浓度的增加,平衡吸附量也增加,当初始浓度为50 mg/L时,qe=15.88 mg/g,在150 min时,吸附达到平衡;当铁屑投加量从0.05 g/L增加到1.0 g/L时,砷的去除率也随之增大,当废铁粉用量进一步增大到5 g/L时,砷的去除率有所下降;p H在5~9时,吸附效果最好。当溶液中阳离子Ca2+、Mg2+共存时可以促进砷在零价铁表面的吸附,SO2-4/NO-3表现为轻微抑制作用,HCO-3和HA的存在明显抑制了As(Ⅲ)的吸附。  相似文献   

11.
锰矿石氧化-磷酸铵镁沉淀预处理焦化废水   总被引:4,自引:1,他引:3  
针对焦化废水中含有高浓度CODCr,挥发酚和氨氮的特性,提出锰矿石氧化-磷酸铵镁(鸟粪石)沉淀两步预处理焦化废水的方法. 以磷酸、硫酸调节焦化废水pH至1.2,利用锰氧化物在酸性条件下的强氧化性,氧化去除废水中的挥发酚和硫化物,去除率分别为99%和100%,同时CODCr的去除率达70%,出水pH升高至1.8;向上述锰矿石处理后的废水投加菱苦土粉(轻烧氧化镁)进行磷酸铵镁沉淀试验. 结果表明,在固液比为18 g/L,搅拌反应24 h后,氨氮以磷酸铵镁沉淀形式得到去除,去除率达90.1%,pH升高至9.4. X射线粉末衍射(XRD)和透射电镜(TEM)对沉淀产物表征分析表明,磷酸铵镁沉淀是在菱苦土颗粒表面形成和生长的.   相似文献   

12.
分析检测了ABS树脂B区、C区、E区及混合废水水质,合理选取混凝气浮法对ABS树脂废水进行了药剂实验,分别选取8种破乳剂和10种絮凝剂对各区废水及混合废水完成了最佳药剂的筛选以及投加量优化,分析得出重要结论提出建设性意见,最后对处理成本进行了分析比较。B区废水最佳破乳剂和絮凝剂为PAC和AN910SH,其最佳投加浓度分别为125 mg/L和12.5 mg/L,其COD、浊度去除率分别能达到95.3%、93.9%和95.1%、95.95%;C区废水最佳破乳剂和絮凝剂为R-破乳剂和FO4440SSH,其最佳投加浓度分别为80 mg/L和8 mg/L,其COD、浊度去除率分别为90.20%、94.35%和97.15%、94.95%;E区废水最佳破乳剂和絮凝剂为R-破乳剂和PAM1,其最佳投加浓度分别为50 mg/L和10 mg/L,其COD、浊度去除率分别为78.30%、97.00%和80.40%、97.60%;混合区废水最佳破乳剂和絮凝剂为R-破乳剂和PAM1,其最佳投加浓度分别为100 mg/L和12.5 mg/L,其COD、浊度去除率分别为98.15%、81.20%和79.05%、98.15%。  相似文献   

13.
试验通过在进水中投加有机碳源(白糖),研究有机碳源对一体化厌氧氨氧化反应器脱氮性能的影响。试验结果表明:进水COD浓度对一体化厌氧氨氧化反应器脱氮性能产生明显的影响。当进水中COD浓度约为50mg/L时,即可导致系统总氮去除率大幅度下降,出水总氮去除率由不添加COD的87.8%降至76%,氨氮去除率由不添加COD的98.8%降至85%;当进水COD浓度上升至约100mg/L时,出水总氮的去除率由不添加COD的87.8%降至69%,氨氮去除率由不添加COD的98.8%降至77%;当进水COD浓度约为100mg/L时,并将调节槽曝气量由原来的0.4L/min增至0.6L/min,系统出水水质明显得到优化,总氮去除率恢复到未投加COD时的水平。有效地控制一体化厌氧氨氧化反应器内有机碳源的量,能明显地提高系统的脱氮效果。  相似文献   

14.
针对三峡库区城市污水氮磷浓度较低的特点,结合城市污水处理旁路污泥减量技术研究,探索了利用鸟粪石结晶沉淀法回收城市污水中氮磷的可行性及影响因素。研究结果表明:低氮磷浓度时,鸟粪石结晶回收氮磷的规律与国内外已有的针对高浓度氮磷的研究规律不同,当污泥厌氧减量池中磷酸盐质量浓度为30~60 mg/L(约为1~2mmol/L)时,在pH值为10.0~10.5,c(Mg2+)∶c(NH 4+)∶c(PO34-)为1∶1.6∶1,反应时间为25 min,搅拌强度在200 r/min的条件下,通过鸟粪石沉淀反应磷去除率可达50%~75%,氮的去除率最高可达51%。  相似文献   

15.
采用化学沉淀结合Fenton法处理焦化废水中的氰化物,分别讨论了Fe SO4的投加量、H2O2的投加量以及溶液初始p H对总氰和易释放氰去除率影响,优化了总氰和易释放氰去除工艺条件。实验结果表明,Fe SO4投加量、溶液初始p H对总氰和易释放氰的去除率影响极为显著;在H2O2投加量为180μL/L、Fe SO4投加量为260mg/L、p H为5.00,总氰和易释放氰去除率分别为95.61%和64.06%,此时溶液中残留的总氰和易释放氰浓度分别为0.450 mg/L和0.235 mg/L,可以实现达标排放。  相似文献   

16.
双碱法烟气脱硫浆液中累积的重金属对SO23-有强烈的催化氧化作用,导致有效脱硫组分损耗.投加Na2S去除浆液中的重金属离子,研究不同重金属离子浓度下SO23-的氧化速率,以揭示Na2S沉淀法对重金属催化氧化SO32-的抑制作用.实验表明,Mn2+对SO32-氧化的催化作用很显著,1.0 mmol/L Mn2+可使SO32-的初始氧化速率提高2.0倍,达0.65mmol/(L.min);SO23-的催化氧化在前60 min内快速进行,Mn2+的反应级数为0.169,故此时段内控制Mn2+浓度对抑制其催化作用尤为重要.初始pH6.50~8.50时,Na2S能有效去除浆液中重金属离子,且碱性条件更有利于重金属离子的去除.初始pH为8.50、Na2S投加量为240.0 mg/L时,脱硫浆液中Mn2+、Zn2+、Ni2+、Cd2+的去除率分别为91.0%、88.1%、85.5%和>99.9%.Mn2+对脱硫浆液中的重金属离子浓度具有指示作用.投加Na2S将Mn2+浓度由1.0 mmol/L降为5.0×10-3mmol/L,SO32-的初始氧化速率降低64.6%,为0.23 mmol/(L.min).在双碱法烟气脱硫中试...  相似文献   

17.
采用电Fenton法预处理染料废水,对影响COD及色度去除率的各种因素,包括内电解反应的初始pH值、铁的投加量、铁炭投加比,Fenton试剂氧化处理过程中初始pH值、H2O2的投加量及投加方式、反应时间等进行了研究。结果表明,内电解反应的最佳条件为:pH值为3.0,铁的投加量为25g/L,Fe/C为1:1.3;Fenton试剂氧化处理染料废水的最佳条件为:H2O2投加量为30mmol/L,pH值为内电解出水pH值(pH值为4.0左右),反应时间为50min。COD去除率可达58%,色度去除率可达95%以上。  相似文献   

18.
利用混凝沉淀联用微电解氧化法对煤气化废水进行深度处理。采用聚合硫酸铁和有机高分子絮凝剂进行混凝实验,混凝后出水采用强化微电解法进一步除去有机物和色度等。实验结果表明混凝实验最佳pH值为6.50,聚合硫酸铁和有机高分子絮凝剂投加浓度分别为300 mg/L和1~3 mg/L,混凝沉淀可以使COD由650.0 mg/L降到209.9 mg/L,平均去除率约67.7%;混凝处理后调节pH值为3.05,Poten MEF-1403填料100 g/L、投加H2O2浓度为100 mg/L、反应105 min后,COD可以降到90.9 mg/L,综合去除率达86.0%,色度由400倍降到6倍,去除率达98.5%,UV254去除率为94.3%。混凝沉淀和强化微电解法组合工艺可以有效的应用于煤气化废水的深度处理,经处理后废水主要指标完全可以达到GB 8978-1996《污水综合排放标准》一级排放标准。  相似文献   

19.
以模拟养猪废水为处理对象,进行了磷酸铵镁结晶小试实验,考察了pH值、NH4 、Mg2 、Ca2 和CO23-浓度对磷酸铵镁结晶反应的影响;利用扫描电镜-能谱分析仪(SEM-EDX)和X射线衍射仪(XRD)对结晶产物进行了表征.结果表明,磷酸铵镁结晶反应的最佳pH值范围为9.5~10.5;随着NH4 与磷摩尔比的增加,磷的去除率增大;最佳的镁与磷的摩尔比为1.4:1,过高的镁盐投加量对提高反应效率作用不明显;Ca2 的存在对磷酸铵镁结晶产物的晶形、纯度均产生干扰,当Ca2 增至一定浓度时,反应将生成无定形的磷酸钙沉淀;CO2-3的存在会降低磷的去除率,但不影响磷酸铵镁的晶形与纯度.  相似文献   

20.
采用MAP法去除垃圾渗滤液中高浓度的氨氮,通过对正交实验和单因素实验确定最佳运行条件为pH值为10.0,反应时间为60min,Mg:N:P摩尔比为1.2:1.0:1.2,此时氨氮的去除率为73.1%,出水磷的浓度为56.3mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号