首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为研究甲烷对合成气层流预混火焰化学动力学特征及合成气层流预混火焰传播特性的影响,选用GRI3.0-机理,模拟研究300 K条件下含0~70%甲烷的合成气层流预混火焰传播速度、火焰温度、反应敏感性及重要自由基浓度等。结果表明:合成气层流预混火焰传播速度、绝热火焰温度随甲烷比例的增加非线性下降,火焰传播速度峰值对应的当量比随甲烷增加显著向贫燃侧发展;富燃条件下,随着甲烷少量加入(≤30%),火焰中自由基H浓度显著下降,火焰传播速度受抑制作用显著;随着甲烷的继续增加,不足的自由基OH抑制自由基CH_3的生成,影响自由基H的消耗,削弱CH_4对层流预混火焰传播速度的抑制作用。  相似文献   

2.
董清丽  蒋勇  邱榕 《火灾科学》2014,23(1):41-49
采用良搅拌反应器模型和层流预混火焰模型计算甲烷/空气燃烧过程,通过元素流通法和浓度敏感性分析法,对甲烷燃烧详细化学动力学机理GRIMECH 3.0进行简化。利用遗传算法,以甲烷/空气详细机理获得的组分浓度和一维层流火焰速度为目标,对简化机理进行优化。结果表明,相比于优化之前的简化机理,优化后的简化机理在描述甲烷/空气燃烧反应的组分浓度、层流火焰速度以及反应物和产物的时空分布方面,具有更高的精度。  相似文献   

3.
从矿井火区实际出发,选用类似于煤矿开采现场产生的多元可燃性气体:CH4,C2H6 ,C2H4,CO,H2 ,利用瞬态光谱测量系统探究了爆炸引发阶段中间产物的光谱特征,分析了组分配比、组分浓度和甲烷浓度对压力特性和中间产物光谱的影响。研究结果表明:在多组分气体加入量较小(未形成体系贫氧状态)时,3种自由基发射光谱峰值出现时间随着甲烷浓度的增大先缩短后延长;在多组分气体加入量较大(形成体系贫氧状态)时,自由基发射光谱峰值出现时间随着甲烷浓度的增大不断延长;当其以任意比例混合后,微观反应过程中关键自由基的出现顺序为:OH自由基先于O自由基, O自由基先于H自由基出现。  相似文献   

4.
陈珊珊  蒋勇  邱榕 《火灾科学》2012,21(3):137-146
建立了基于重要性分析的详细化学机理分析平台,利用耦合组分化学存活时间和敏感性系数的重要性参数,确定详细机理中的准稳态组分,通过移除这些组分及其相关反应,得到了计算精度较高的框架机理。针对目前燃烧学界较为关注的混合燃烧问题,以甲烷、乙烯这两种典型低碳碳氢燃料为研究对象,对其详细化学反应机理进行了分析,利用重要性分析法构筑框架机理,并对甲烷/空气和甲烷/乙烯/空气预混火焰进行了数值计算。与详细机理相比,框架机理所涉及的组分数与基元反应数都得到了大幅度的降低,计算时间明显减少,但对火焰温度及反应物、生成物、中间组分浓度的预测与采用详细机理得到的结果吻合良好,证明了重要性分析法的有效性与可靠性。  相似文献   

5.
蒋勇  邱榕  董刚  张和平  范维澄 《火灾科学》2003,12(4):203-208
研究激波着火现象,推导激波加热点燃可燃气控制方程组。针对甲烷预混气激波火焰结构进行数值模拟,计算了激波燃烧时的压力、温度、及不同组分随时间的变化历程。其中甲烷燃烧采用美国BERKELEY大学GRI-MECH机理,该反应机理包含177个基元反应,涉及32种组分。程序采用美国SANDIA国家实验室发展的大型化学反应动力学软件包CHEMKIN III中相关的模型、子程序和热力学数据库。计算结果表明激波火焰有其自身的结构特征。  相似文献   

6.
采用连通法,针对甲烷复杂反应机理,成功地进行了不同水平的机理简化研究。通过建立组分依赖关系的正规化Jacobian矩阵,精确地查明了燃烧组分之间的耦合关系,分别构造出仅包含重要化学路径的两个动力学简化模型,获得的简化机理分别包含227和138个反应,分别涉及39和26种组分。通过对层流预混火焰结构的模拟,所得简化机理和原详细反应动力学机理关于火焰结构的计算吻合很好,计算结果显示,两个简化机理具有较高的模拟精度。  相似文献   

7.
为准确测量掺氢天然气层流预混火焰传播速度,并研究掺氢比对掺氢天然气层流预混火焰传播特性的影响,通过本生灯法对比试验研究自然光及纹影拍摄条件下掺氢天然气层流预混火焰的传播速度,根据化学动力学机制模拟计算并讨论不同掺氢比条件下的预混燃料层流火焰传播特性。研究表明:利用纹影系统拍摄获得的火焰传播速度更接近燃烧学定义的层流预混火焰传播速度;随着掺氢比的增加,掺氢天然气层流预混火焰传播速度及绝热火焰温度均不断增加,且层流预混火焰传播速度峰值所对应的当量比显著向富燃料侧移动;燃料中氢气组分的不断增加使得H自由基的摩尔分数以及OH自由基的生成速率均显著增加。  相似文献   

8.
设计了预混气体载流雾化水惰化和抑制燃烧管实验台,对层流火焰的燃烧速度、稳定性及拉伸变形规律进行实验研究,分析了雾化水抑制和熄灭层流预混火焰的过程和机理,获得了雾化水惰化爆炸极限内甲烷和空气预混气体的特性。研究结果表明:浓度为7%的甲烷和空气预混气体,最小惰化雾化水通量为20.8ml/(m2.min);对于浓度为9%的甲烷和空气预混气体,最小惰化雾化水通量为32.9ml/(m2.min);对于浓度为11%的甲烷和空气的预混气体,最小惰化雾化水通量为44.6ml/(m2.min)。研究成果为雾化水熄灭甲烷火焰和抑制甲烷爆炸具有一定的指导意义。  相似文献   

9.
采用Smooke 35步机理和条件矩封闭模型,数值方法应用二阶精度中心差分和刚性系统算法器VODE,对一甲烷对撞火焰结构进行了模拟,获得了非预混火焰中反应物、主产物和微量组分随混合分数的变化关系.结果表明,该方法具有较好预测效果,具有较大潜力.  相似文献   

10.
三氟甲烷(CF3H,HFC - 23)是一种优良的哈龙替代物,在目前的气体灭火介质市场占据显著的位置.然而,在三氟甲烷和火焰作用的过程中产生的HF不仅对火灾现场设备具有严重的腐蚀,而且对灭火现场人员具有严重的伤害.首先采用k-ε涡黏湍流模型,对CF3H熄灭CH4/O2的二维稳态湍流非预混燃烧进行数值分析,讨论杯式燃烧器中CF3H熄灭CH4/O2火焰过程中HF组分变化规律,通过改变初始参数分析CF3H浓度、CH4/O2配比对HF生成量的影响;采用CHEMKIN 4.0程序模拟CF3H熄灭CH4/O2火焰中温度、反应物、主产物和自由基浓度随火焰高度的变化关系.结果表明,火焰上方20~25cm的区域为HF富集区;H、CF:O为生成HF的重要中间产物,可以通过降低中间产物浓度降低 HF.  相似文献   

11.
烷烃类燃料/空气预混气着火过程数值预测   总被引:6,自引:2,他引:4  
蒋勇  吴志新  朱宁  范维澄 《火灾科学》2001,10(3):135-139
理论分析烷烃类燃料,空气混合物热着火过程,并对IPIC-CFDII软件进行修改,使之适全合资料零维着火计算,程序采用了美国SANDIA国家实验室,NASA和BERKELEY大学热力学数据库中的相关参数以及大型化学反应动力学软件包CHEMKIN中相关的模型和子程序,运用开发的源码,以庚烷/空气预混气为例,采用庚烷氧化的最新化学反应动力学机理(包含290个基元反应,涉及57种组分),计算了其在不同点火温度,不同当量比和不同压力下的着火延迟时间,同时预测了火焰中反应物,主产物,自由基沈庆以及温度变化的时间进程,以具体说明该软件的应用效果。  相似文献   

12.
Study of flame distribution laws and the hazard effects in a tunnel gas explosion accident is of great importance for safety issue. However, it has not yet been fully explored. The object of present work is mainly to study the effects of premixed gas concentration on the distribution law of the flame region and the hazard effects involving methane-air explosion in a tube and a tunnel based on experimental and numerical results. The experiments were conducted in a tube with one end closed and the other open. The tube was partially filled with premixed methane-air mixture with six different premixed methane concentrations. Major simulation works were performed in a full-scale tunnel with a length of 1000 m. The first 56 m of the tunnel were occupied by methane–air mixture. Results show that the flame region is always longer than the original gas region in any case. Concentration has significant effects on the flame region distribution and the explosion behaviors. In the tube, peak overpressures and maximum rates of overpressure rise (dp/dt)max for mixtures with lower and higher concentrations are great lower than that for mixtures close to stoichiometric concentration. Due to the gas diffusion effect, not the stoichiometric mixture but the mixture with a slightly higher concentration of 11% gets the highest peak overpressure and the shock wave speed along the tube. In the full-scale tunnel, for fuel lean and stoichiometric mixture, the maximum peak combustion rates is achieved before arriving at the boundary of the original methane accumulation region, while for fuel rich mixture, the maximum value appears beyond the region. It is also found that the flame region for the case of stoichiometric mixture is the shortest as 72 m since the higher explosion intensity shortens the gas diffusion time. The case for concentration of 13% can reach up to a longest value of 128 m for longer diffusion time and the abundant fuel. The “serious injury and death” zone caused by shock wave may reach up to 3–8 times of the length of the original methane occupied region, which is the widest damage region.  相似文献   

13.
High temperature flame fronts generated in methane–air explosions are one of the major hazards in underground coal mines. However, the distribution laws of the flame region in explosions of this type and the factors influencing such explosions have rarely been studied. In this work, the commercial software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, was used to carry out numerical simulations of a series of methane–air explosion processes for various initial premixed methane–air regions and cross-sectional areas in full-scale coal tunnels. Based on the simulated results and related experiments, the mechanism of flame propagation beyond the initial premixed methane–air region and the main factors influencing the flame region were analyzed. The precursor shock wave and turbulence disturb the initial unburned methane–air mixture and the pure air in front of the flame. The pure air and unburned mixture subsequently move backward along the axial direction and mix partially. The enlargement of the region containing methane induces that the range of the methane–air flame greatly exceeds the initial premixed methane–air region. The flame speed beyond the initial region is nonzero but appreciably lower than that in the original premixed methane–air region. The length of the initial premixed methane–air region has substantial influence on the size of the flame region, with the latter increasing exponentially as the former increases. For realistic coal tunnels, the cross-sectional tunnel area is not an important influencing factor in the flame region. These conclusions provide a theoretical framework in which to analyze accident causes and effectively mitigate loss arising from the repetition of similar accidents.  相似文献   

14.
DME is thought to be a good alternative fuel due to its cleanliness and more excellent fuel economy. Although the prediction and loss prevention of flammability hazard is very important for safety of DME installations, the evaluation method with sufficient accuracy has not been established. In this study, a numerical combustion model is constructed and a 3-dimensional computational fluid dynamics (CFD) simulation of a premixed DME/air explosion in a large-scale domain is conducted. The main feature of the numerical model is the solution of a transport equation for the reaction progress variable using a function for turbulent flame velocity which characterizes the turbulent regime of propagation of free flames derived by introducing the fractal theory. The model enables the calculation of premixed gaseous explosion without using fine mesh of the order of micrometer, which would be necessary to resolve the details of all instability mechanisms. The value of the empirical constant contained in the function for turbulent flame velocity is evaluated by analyzing the experimental data of LPG/air and DME/air premixed explosions. The comparison of flame behavior between the experimental result and numerical simulation shows good agreement.  相似文献   

15.
Hydrogen-enrichment has been proposed as a useful method to overcome drawbacks (local flame extinction, combustion instabilities, lower power output, etc.) associated to turbulent premixed combustion of natural gas in both stationary and mobile systems. For the safe use of hydrogen-enriched hydrocarbon fuels, explosion data are needed.In this work, a comparative experimental study of the explosion behavior of stoichiometric hydrogen-enriched methane/air (with 10% of hydrogen molar content in the fuel) and pure methane/air mixtures is presented. Tests were carried out in a 5 l closed cylindrical vessel at different initial pressures (1, 3 and 6 bar), and starting from both quiescent and turbulent conditions.Results allow quantifying the combined effects of hydrogen substitution to methane, pressure and turbulence on maximum pressure, maximum rate of pressure rise, burning velocity and Markstein lengths.  相似文献   

16.
An experimental study has been conducted to investigate the effects of hydrogen addition on the fundamental propagation characteristics of methane/air premixed flames at different equivalence ratios in a venting duct. The hydrogen fraction in the methane–hydrogen mixture was varied from 0 to 1 at equivalence ratios of 0.8, 1.0 and 1.2. The results indicate that the tendency towards flame instability increased with the fraction of hydrogen, and the premixed hydrogen/methane flame underwent a complex shape change with the increasing hydrogen fraction. The tulip flame only formed when the fraction of hydrogen ranged from 0 to 50% at an equivalence ratio of 0.8. It was also found that the flame front speed and the overpressure increased significantly with the hydrogen fraction. For all equivalence ratios, the stoichiometric flame (Φ = 1.0) has the shortest time of flame propagation and the maximum overpressure.  相似文献   

17.
搭建了基于可视化燃烧管道的预混火焰精细结构实验台,通过理论分析和实验等手段对预混火焰的瞬态传播过程及加速传播特性进行了研究,分析得出了不同甲烷含量的预混火焰加速传播规律及预混火焰由层流向湍流的转变规律.  相似文献   

18.
In this paper, large eddy simulation coupled with a turbulent flame speed cloure (TFC) subgrid combustion model has been utilized to simulate premixed methane–air deflagration in a semi-confined chamber with three obstacles mounted inside.The computational results are in good agreement with published experimental data, including flame structures, pressure time history and flame speed. The attention is focused on the flame flow field interaction, pressure dynamics, as well as the mechanism of obstacle-induced deflagration. It is found that there is a positive feedback mechanism established between the flame propagation and the flow field. The pressure time history can be divided into four stages and the pseudo-combustion concept is proposed to explain the pressure oscillation phenomenon. The obstacle-induction mechanism includes direct effect and indirect effect, but do not always occur at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号