首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total lipid and wax ester content as well as the fatty acid and alcohol composition of all copepodid stages and adults of Calanus finmarchicus s.l. were investigated at different locations in the North Sea in 1983 and 1984. Total lipid and the wax ester proportion increased exponentially until Copepodid V. The females were sometimes lower in lipids than the Stage V. The wax ester proportion reached about 90% of total lipids in males and Copepodid V and up to 40% in Copepodid I. The major fatty acids were 16:0, 20:5, and 22:6 and the major fatty alcohols were 16:0, 20:1 and 22:1. At one station the 18:4 acid became one of the dominant acids, because of a Phaeocystis sp. bloom, indicating that the fatty acids of the diet are incorporated mostly unchanged into the lipids of the copepods. The other main fatty acids 20:1 and 22:1 are probably synthesized de novo, serving as precursors for the principal alcohols 20:1 and 22:1. Their levels decreased in the younger stages due to increases in 16:0 alcohol. The fatty alcohol-forming enzyme seems to be specific for saturated and monounsaturated acids, which may be synthesized de novo or derived from diet.  相似文献   

2.
Lipid compositions of the dominant Antarctic copepods Calanoides acutus, Rhincalanus gigas and Calanus propinquus from the Weddell Sea have been investigated in great detail. Copepods were collected during summer in 1985 and late spring/early winter in 1986. The analyses revealed specific adaptations in the lipid biochemistry of these species which result in very different lipid components. The various copepodite stages of C. acutus synthesize wax esters with long-chain monounsaturated moieties and especially the alcohols consisted mainly of 20:1(n-9) and 22:1(n-11). R. gigas also generates wax esters, but with moieties of shorter chain length. The fatty alcohols consisted mainly of 14:0 and 16:0 components, while the major fatty acids were 20:5, 18:4 and 22:6, of which 18:4 probably originated from dietary input. In contrast, C. propinquus accumulates triacylglycerols, a very unusual depot lipid in polar calanoid copepods. Major fatty acids in C. propinquus were the long-chain monounsaturates 22:1(n-9) and 22:1(n-11), which may comprise up to 50% of total fatty acids. In C. acutus and C. propinquus there was a clear increase of long-chain fatty acids with increasing developmental stage. In contrast, the fatty acid and alcohol composition of the R. gigas copepodite stages were characterized by the dominance of the polyunsaturated fatty acids as well as high amounts of the monounsaturates 18:1(n-9) and 16:1(n-7). There was a considerable decrease of the dietary fatty acid 18:4(n-3) towards the older stages during summer; in late winter/early spring 18:4 was only detected in very low amounts. This tendency was also found in the other two species, but was less pronounced. In all three species dry weight and lipid content increased exponentially from younger to older stages. The highest portion of wax esters, or of triacylglycerols in C. propinquus, was found in the adults. Dry weight and lipid content were generally higher during summer. In late winter/early spring the variability was more pronounced and lipid-rich specimens showed a selective retention of long-chain monounsaturated fatty acids, whereas in lipid-poor specimens these fatty acids were very much depleted.  相似文献   

3.
Ecological and physiological studies focused on dietary preferences, lipid biochemistry and energetics within the three Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica from meso- and bathypelagic depths. Eukrohnia hamata and E. bathypelagica respired 0.15 μL O2 mg dry mass (DM)−1 h−1, which translates to an average metabolic loss of only <1.1% of body carbon per day. Lipid storage was not substantial in E. bathypelagica (mean 11.5 ± 6.5% DM) and E. bathyantarctica (mean 15.4 ± 4.1% DM) during summer and winter, suggesting year-round feeding of these predators mainly on copepods. In E. bathypelagica, total fatty acids were dominated by the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) and in E. bathyantarctica also by 18:1(n-9), a fatty acid usually found in storage lipids. Only the latter species was characterized by significant amounts of wax esters, consisting largely of the common fatty alcohols 16:0, 20:1(n-9) and the unusual fatty alcohol isomer 22:1(n-9).  相似文献   

4.
Seasonal lipid dynamics of various developmental stages were investigated in Pseudocalanus minutus and Oithona similis. For P. minutus, the dominance of 16:1(n−7), 16:4(n−3) and 20:5(n−3) fatty acids indicated a diatom-based nutrition in spring, whereas 22:6(n−3), 16:0, 18:2(n−6) and 18:1(n−9) pointed to a flagellate-based diet during the rest of the year as well as omnivorous/carnivorous low-level feeding during winter. The shorter-chain fatty alcohols 14:0 and 16:0 prevailed, also reflecting biosynthetic processes typical of omnivores or carnivores. Altogether, the lipid signatures characterized P. minutus as an opportunistic feeder. In contrast, O. similis had consistently high amounts of the 18:1(n−9) fatty acid in all stages and during all seasons pointing to a generally omnivorous/carnivorous/detritivorous diet. Furthermore, the fatty alcohol 20:1(n−9) reached high percentages especially in adult females and males, and feeding on Calanus faecal pellets is suggested. Fatty alcohols, as wax ester moieties, revealed significant seasonal variations in O. similis and a seasonal trend towards wax ester accumulation in autumn in P. minutus. P. minutus utilized its lipid deposits for development in the copepodite stages III and IV and for gonad maturation in CV and females during the dark season. However, CVs and females depended on the spring phytoplankton bloom for final maturation processes and reproduction. O. similis fueled gonad maturation and egg production for reproduction in June by wax esters, whereas reproduction in August/September co-occurred with the accumulation of new depot lipids. Both species revealed significantly higher wax ester levels in deeper (>50 m) as compared to surface (0–50 m) dwelling individuals related to a descent prior to overwintering.  相似文献   

5.
 Various developmental stages (early larvae to adults) of Euphausia superba have been collected in different seasons in the Weddell Sea, the Lazarev Sea and off the Antarctic Peninsula to investigate the role of lipids and fatty acids in the life cycle of the Antarctic krill. The total-lipid data for E. superba exhibited seasonal variations, with low lipid levels in late winter/early spring and the highest levels in autumn. Seasonal changes were most pronounced in the immature and adult specimens, increasing from about 10% lipid of dry mass to more than 40%. The fatty-acid compositions of the younger stages were dominated by 20:5(n-3), 22:6(n-3) and 16:0. These are typical phospholipid fatty acids, which are major biomembrane constituents. The phospholipid composition was similar in the older stages. With increasing storage of triacylglycerols in the lipid-rich immature and adult stages, the fatty acids 14:0, 16:0 and 18:1(n-9) prevailed, comprising about 70% of total triacylglycerol fatty acids. The trophic-marker fatty acids 16:1(n-7) and 18:4(n-3), indicating phytoplankton ingestion, were less abundant. They reflected, however, the dependence of the larvae on phytoplankton as well as the seasonal changes in algal composition. The generally close linear relationships between fatty acids and lipid suggest that the fatty-acid compositions of the collected specimens were largely independent of the respective developmental stage, season and region. The linear fit indicates that triacylglycerol accumulation started at a level of about 5% of total lipid. Considering the various overwintering scenarios under discussion, the life cycle and reproductive strategies of krill are discussed in the context of the lipid metabolism and fatty-acid composition of E. superba. Lipid production is effective enough to accumulate large energy reserves for the dark season, but E. superba does not exhibit the sophisticated biosynthetic pathways known from other Antarctic euphausiids and copepods. Although important, lipid utilisation appears to be just one of several strategies of E. superba to thrive under the extreme Antarctic conditions, and this pronounced versatility may explain the success of this species in the Southern Ocean. Received: 16 June 2000 / Accepted: 18 December 2000  相似文献   

6.
Lipids of the Arctic ctenophore Mertensia ovum, collected from Kongsfjorden (Svalbard) in 2001, were analysed to investigate seasonal variability and fate of dietary lipids. Total lipids, lipid classes and fatty acid and alcohol compositions were determined in animals, which were selected according to age-group and season. Changes in lipids of age-group 0 animals were followed during growth from spring to autumn. Total lipids increased from May to September. Lipids as percentage of dry mass were lowest in August indicating their use for reproduction. Higher values occurred in September, which may be due to lipid storage for overwintering. Wax esters were the major lipid class accounting for about 50% of total lipids in age-group 0 animals from July and August. Phospholipids were the second largest lipid fraction with up to 46% in this age-group. The principal fatty acids of M. ovum from all age-groups were 22:6(n-3), 20:5(n-3) and 16:0. Wax ester fatty alcohols were dominated by 22:1(n-11) and 20:1(n-9) followed by moderate proportions of 16:0. The unique feature of M. ovum lipids was the high amount of free fatty alcohols originating probably from the dietary wax esters. In May, free alcohols exhibited the highest mean proportion with 14.6% in age-group 0 animals. We present the first data describing a detailed free fatty alcohol composition in zooplankton. This composition was very different from the alcohol composition of M. ovum wax esters because of the predominance of the long-chain monounsaturated 22:1(n-11) alcohol accounting for almost 100% of total free alcohols in some samples. The detailed lipid composition clearly reflected feeding of M. ovum on the herbivorous calanoid species, Calanus glacialis and C. finmarchicus, the abundant members of the zooplankton community in Kongsfjorden. Other copepod species or prey items seem to be less important for M. ovum.  相似文献   

7.
Changes in total lipids, lipid classes and their fatty acid contents were studied in the ovaries and midgut glands ofPenaeus kerathurus Forskäl females during sexual maturation. The shrimp were captured in the Gulf of Cádiz (southwest Spain) in 1990. The lipid content and fatty acids, in relative terms, increased during ovarian development. The greatest changes occurred between Maturation Stages III and IV. Ovarian lipids were dominated by polar classes, whereas in the midgut gland the major classes were triacylglycerols and sterol esters. The amounts of major fatty acids in ovaries (16:0, 16:1n-7, 18:1n-9, 18:1n-7, 20:5n-3 and 22:6n-3) increased with increasing maturity, but declined slightly between Stages III and IV. The total polar lipid content of the midgut was 5.7% (by dry weight) and its fatty acid composition remained constant during the whole study period. Total lipid content of the midgut gland showed an upward trend during sexual maturation, except between Stages II and III, when a slight decrease was observed. Predominant fatty acids in the midgut gland (16:1n-7, 20:5n-3 and 22:6n-3) displayed a noteworthy decline between Stages II and III, corresponding with the marked increase in total lipid fatty acid content in the ovaries during the same period.  相似文献   

8.
Changes in biochemical composition, lipid class and fatty acid contents were studied in the ovaries and midgut glands of the fiddler crabs Uca tangeri Eydoux during maturation. Wild females were caught during spring and early summer of 1992 in the Bay of Cádiz (southwest Spain), near the mouth of the San Pedro river. Protein and total lipid contents in the ovaries increased significantly from Stages III to IV, at the expense of total carbohydrate, which showed a large decrease during the same period. In the midgut gland, the protein content did not present any significant variation, whereas total lipids and total carbohydrates presented opposite up and down trends during maturation. In the ovary, total polar lipids increased significantly during the final phase of maturation (Stages III to IV), mainly due to the significant contribution of the phosphatidylcholine and phosphatidylethanolamine fractions. In contrast, total neutral lipids showed an upward trend throughout the whole maturation period, mainly due to significant increases of the triacylglycerol fraction. In the midgut gland, total polar lipids (mainly phosphatidylcholine) and total neutral lipids (mainly triacylglycerol) presented significant decreases from Stages II to III, the phase which preceded major increases in both polar and neutral lipids in the ovaries. Cholesterol content did not vary during maturation in either organ, in the ovary or midgut gland. Major fatty acids in the ovaries [16:0, 16:1 (n-7), 18:1 (n-9), 18:1 (n-7), 18:2 (n-6), 18:3 (n-3), 20:4 (n-6), 20:5 (n-3) and 22:6 (n-3)] did, however, accumulate significantly at later stages of maturation. It is noteworthy that arachidonic acid [20:4 (n-6)] content remained constant during all stages of maturation but decreased significantly in total polar lipids in the later phases of maturation. In contrast, eicosapentaenoic acid [20:5 (n-3)] increased significantly in all lipid fractions in the later stages, and docosahexaenoic acid [22:6 (n-3)] remained constant in the polar lipids and increased during later stages in the triacylglycerol fraction. Major fatty acids in the midgut gland lipids showed significant decreases from Stages II to III, just before the final period of maturation.  相似文献   

9.
The lipid class composition and the fatty acid composition of total lipids of the cysts, newly hatched nauplii and 24-h-old metanauplii of a Spanish parthenogenetic diploid strain ofArtemia sp. were studied. Substantial differences in the total lipid level occurred among these stages, with a marked increase from the cyst to the nauplii being followed by a decrease in the metanaupliar stages. This variation affected the absolute levels (mg/g dry wt) of the total lipid classes and individual fatty acids, although the percent composition of the fatty acids in total lipid was essentially unchanged. An exception occurred during hatching in that the percentages of 16:0 and 16:1n-7 in total lipid decreased whereas that of 20: 5n-3 increased. The lipid classes showed higher variation than the fatty acids both in absolute and in relative terms, and in particular, the ratio of phosphatidylcholine:phosphatidylethanolamine decreased progressively from cysts to nauplii and metanauplii. The implications of these findings for the use ofArtemia sp. as a larval feed in aquaculture are considered.  相似文献   

10.
Herring (Clupea harengus L.) and rainbow trout (Salmo gairdnerii) fed frozen-thawed zooplankton for 7 days assimilated more than 90% of the dry matter in the zooplankton consumed. Less than 5% of the total lipid ingested, largely wax esters, was excreted in the faeces. Faecal lipids from both the herring and the trout, especially the latter, were rich in wax esters and free fatty alcohols. Faecal fatty alcohols were enriched in 22:1 and deficient in 16:0 and 16:1 alcohols compared to zooplankton fatty alcohols. The growth of rainbow trout fed frozen-thawed zooplankton over 3 months was about one-half of that of trout fed commercial pellets. The fish fed on zooplankton appeared normal and were more pigmented than the fish fed on commercial pellets.  相似文献   

11.
The calanoid copepods Calanus hyperboreus and C. finmarchicus were investigated in view of their lipid and wax ester content and their fatty acid and alcohol composition. Analyses were performed in females and copepodid stages V and IV from the Fram Strait region between Greenland and Spitsbergen in 1984. This region offers different food conditions like diatom blooms in the North East Water Polynya, food shortage in areas with very close ice cover, high phytoplankton biomass in the marginal ice zone and lower biomass in the open Atlantic water. Lipids contained generally more than 70% wax esters. Highest levels were found in C. hyperboreus with more than 90%. This percentage was not very variable, in spite of large differences in dry weight and lipid content. Copepods with particularly high weight and lipid content were found in the North East Water Polynya. The lightest individuals were found under the pack ice. Lipid proportions per unit dry weight were higher in C. hyperboreus than in C. finmarchicus, whose lowest values were found in the open Atlantic water. Spatial variability in fatty acid composition was much higher than in alcohol composition. The principle alcohols, 20:1 and 22:1, generally accounting for more than 80% of total alcohols. In the North East Water Polynya, the predominant monounsaturated fatty acid was 16:1, while under the ice 20:1 and 22:1 dominated. In the marginal ice zone and in the open water, the 18:4 acid reached percentages up to 30% of total fatty acids. These changes were related to the different food conditions. C. hyperboreus appears to be best adapted to the cold water and unfavourable conditions of polar regions because of its high lipid and wax ester store with long-chain wax esters of high calorific value.  相似文献   

12.
The temperate sea anemoneAnemonia viridis (Forskäl) contained about 11% lipid on a dry weight basis when maintained at light levels of about 10µE m–2 s–1 and a temperature of 10°C. Aposymbiotic forms of the anemone had similar lipid levels. These values are very low compared with tropical symbiotic Anthozoa in which lipid levels constitute up to 50% of dry weight. In symbioticA. viridis, <6% of total lipid consisted of the storage lipids, wax esters and triglycerides. Most of the triglyceride was stored in the animal tissues rather than the zooxanthellae. Zooxanthellae contained only small amounts of wax esters. An analysis was made of the wax ester, triglyceride and fatty acid composition of symbiotic anemones, isolated zooxanthellae and aposymbiotic anemones. Wax ester composition was similar in symbiotic and aposymbiotic forms. However, triglyceride composition differed. In particular trimyristin (C42) was found only within the symbiotic association. Fatty acids showed a high degree of unsaturation, and acids with both even and odd numbers of carbon atoms were found. The most abundant fatty acid was 16:0 in all samples, except for the total lipids from zooxanthellae in which the major fatty acid wastrans-18:1.  相似文献   

13.
Total lipid of Meganyctiphanes norvegica (M. Sars) contained 53% triacylglycerols and traces of wax esters, that of Thysanoessa raschi (M. Sars) contained 44% triacylglycerols and 10% wax esters and that of T. inermis (Krøyer) contained 28% triacylglycerols and 40% wax esters. The triacylglycerols of M. norvegica were relatively rich in 20:1 and 22:1 fatty acids and its traces of wax esters resembled those of calanoid copepods. The triacylglycerols of both Thysanoessa species were deficient in 20:1 and 22:1 fatty acids but were richer in 16:1(n-7) and 18:1 (n-7) acids than those of M. norvegica. The wax esters of T. raschi contained phytol as almost the only fatty alcohol and were rich in 16:0 and 18:1 (n-9) fatty acids. The wax esters of T. inermis contained mainly 16:0 and 14:0 fatty alcohols with lesser amounts of phytol and their dominant fatty acid was 18:1, especially the (n-9) isomer. The triacylglycerols of T. inermis had 18:4 (n-3) as the major polyunsaturated fatty acid. From these and other aspects of fatty acid and fatty alcohol analyses it is concluded that a major foodstuff of M. norvegica in Balsfjorden is wax ester-rich calanoid copepods. T. raschi and especially T. inermis are concluded to have much more preference for phytoplanktonic food. Results are discussed in terms of current knowledge of the lipid chemistry of krill in the northern and southern hemispheres.  相似文献   

14.
The fatty acid and alcohol composition of the pelagic amphipod, Themisto libellula, was monitored during the 5 first months of its life cycle (4–20 mm length) in an Arctic fjord, Kongsfjorden, Svalbard. Fatty acids of the three major lipid classes, polar lipids (PL), triacylglycerol (TAG), and wax esters (WE), were analyzed to highlight ontogenic changes in their diet and metabolism. The PL composition of T. libellula did not show any strong variations along their growth except during the first month where an important increase of 20:5(n-3) (EPA) and 22:6(n-3) (DHA) was observed. The TAG composition revealed a clear gradient corresponding to a diet shift from omnivorous juveniles toward carnivorous sub-adults and adults. Indeed, fatty acid trophic markers of diatoms were dominant in the juveniles, whereas 20:1(n-9) and 22:1(n-11), the Calanus sp. trophic markers, overwhelmed in the older stages. The WE composition highlighted the same general trend, however, differences were found with the TAG and are discussed as a result of differences in turnover rates and assimilation pathways between the two lipid classes.  相似文献   

15.
The fatty-acid composition of lipids from ovulated eggs of wild and cultured turbot was investigated in order to estimate the nutritional requirements during embryonic and early larval development. Lipid comprised 13.8±0.5% (n=5) and 13.2±0.7% (n=7) of the egg dry weight in wild and cultured turbot, respectively. Polyunsaturated fatty acids (PUFA) of the (n-3) series accounted for 39% of total fatty acids in total lipid of both wild and cultured fish. The predominant (n-3) FUFA was docosahexaenoic acid (22:6 n-3), which also was the most abundant fatty acid in turbot eggs and comprised 24 and 23% of the total egg fatty acids in wild and cultured fish, respectively. Phospholipids, triacylglycerols and cholesterol-wax esters of turbot eggs all exhibited a specific fatty-acid profile distinctly different from that of total lipid. The general pattern of the fatty-acid distribution in lipids of eggs from wild and cultured turbot was similar, but the relative amount of 18:2(n-6) was considerably higher and 20:1(n-9) slightly higher in cultured fish. These differences were extended to all lipid classes and probably reflect the dietary intake of certain vegetable and marine fish oils. Calculations based on light microscopical studies showed that 55 to 60% of the total lipids in cultured turbot eggs are confined to the oil globule. The size of the oil globule remained constant during embryogenesis, and a reduction in size occurred first after hatching and mainly after yolk depletion. This implies that the total amount of lipids utilised during the embryonic development is considerably less than the total lipids present in ovulated turbot eggs. Comparison of the fatty-acid composition of total lipids from eggs and vitellogenin of wild turbot reveals that egg lipids contained a lower level of saturated and a higher level of monounsaturated fatty acids. Eggs also contained wax esters, which were not detected in vitellogenin, suggesting that vitellogenin is not the only source of lipids for turbot eggs.  相似文献   

16.
The lipid composition of tropical marine reef fishes is poorly known, despite their use as food by local human populations and recent interest in health-related benefits of fish lipids. We examined the composition of lipids from epaxial muscle, liver, and two storage sites [mesenteries surrounding the gut (intraperitoneal fat, IPFs) and retroperitoneal fat bodies (FBs) posterior to the peritoneal cavity] in three species of surgeonfishes from Ishigaki Island, Japan: Naso lituratus (Bloch and Schneider, 1801), Acanthurus lineatus (Linnaeus, 1758), and A. bariene (Lesson, 1830). Triacylglycerols dominated all samples of neutral lipid and constituted ≥ 99% of FBs and IPFs. Polar lipids generally contained large fractions of phosphatidylethanolamine and phosphatidylcholine. Quantified fatty acids ranged in length from C14 to C24. C16 fatty acids prevailed (>35% of neutral fatty acids, >23% of polar fatty acids), although C18 (>16 and >14%, respectively) and C20 acids (>8 and >19%, respectively) were also common. Saturated fatty acids, dominated by palmitic acid (16:0), comprised 38.7 to 50.7% of acids from neutral lipids and 30.8 to 41.1% from polar lipids. The most common monounsaturated acids were 18:1n9 and 20:1n9. Polyunsaturated acids were prevalent in polar lipids (especially 20:4n6, 20:5n3, 22:2n3, 22:5n3, 22:5n6 and 22:6n3). Common polyunsaturated acids of neutral lipids were 18:2n6, 18:4n3, several n-3 and n-6 C20 acids, 22:2n3 and 22:5n3. IPF and FB were almost identical across species, and lipids of fat bodies (IPFs, FBs) were more similar to those of muscle than those of liver for all three species. The FBs appear to constitute an accessory storage site, which overcomes constraints on lipid storage imposed by a small, inflexible abdominal cavity that contains both viscera and consistently voluminous gut contents. Fatty acid signatures indicate that largely overlooked epiphytic or epilithic diatoms contribute significantly to lipid acquisition. The combination of large quantities of both saturated and n-3 and other polyunsaturated fatty acids in surgeonfishes, in contrast to low saturates and high polyunsaturated acids in lipids of commercially important cool-water fishes, suggests that a study of dietary effects of fish lipids on human inhabitants of the tropics may be instructive insofar as human health and nutrition are concerned. Received: 16 March 1998 / Accepted: 6 August 1998  相似文献   

17.
Wax esters, which function as reserve fuels, account for 25 to 40% of the lipid of the pelagic copepod Calanus helgolandicus (Copepoda, Calanoida). In laboratory experiments with these crustaceans, diatoms (Lauderia borealis, Chaetoceros curvisetus, and Skeletonema costatum) and dinoflagellates (Gymnodinium splendens), which contained no wax esters, were used as food. Changes in the food concentration affected both the amount of lipid and the composition of the wax esters. Since the fatty acids of the triglycerides and wax esters of C. helgolandicus resembled the dietary fatty acid composition, it appeared that copepods incorporated their dietary fatty acids largely unchanged into their wax esters. The polyunsaturated alcohols of the wax esters did not correspond in carbon numbers or degrees of unsaturation to the dietary fatty acids. We postulate two different metabolic pools to explain the origin of these long chain alcohols. The phospholipid fatty acids were not affected by changes in the amount or type of food, probably because of their structural function.  相似文献   

18.
The sea butterfly Limacina helicina was collected from May to September 2001 in Kongsfjorden, Spitsbergen, to investigate population structure and body and lipid composition with regard to life cycle and reproductive strategy. Veligers and juveniles were only found in late autumn and spring, whereas females occurred from July to September. The size of the females increased until mid-August and decreased in September. Dry and lipid mass were closely related to size; dry mass increased exponentially and lipids linearly with size. The lipid content was highest in veligers (31.5% of dry mass) and juveniles (23.6%) but low in females (<10%). Phospholipids were the dominating lipid class followed by triacylglycerols. Females, veligers, and egg ribbons, all from September, were richest in phospholipids. Juveniles contained the highest amounts of triacylglycerols, whereas females had low levels in July and the beginning of August. In mid-August, levels of triacylglycerols were variable and higher. This suggests that females were in their main spawning period and the high variability in triacylglycerols points to different stages within the spawning cycle. Enhanced amounts of free fatty acids in females from July may be related to gonad development. The 16:1(n-7) fatty acid was more dominant in spring whereas 18:4(n-3) increased in summer and autumn, which reflects a change in diet from diatom-dominated food items in spring to dinoflagellates in summer/autumn. Small amounts of long-chain monounsaturated fatty acids suggest ingestion of copepods, and the fatty acid composition of veligers feeding on particulate matter. L. helicina has a one-year life cycle with peak spawning in August and over-winters as veligers that may grow to juveniles during the winter period. They metamorphose into juveniles during spring, develop to males in early summer, and mature into females in July and August.Communicated by M. Kühl, Helsingør  相似文献   

19.
R. F. Lee 《Marine Biology》1974,26(4):313-318
A build-up of reserve lipid, predominantly wax esters, occurred during the summer in the copepod Calanus hyperboreas, collected off an Arctic ice-island. This lipid storage was correlated with a phytoplankton bloom and was followed by a progressive decrease of lipid from 2.1 mg per individual in September to 0.4 mg in June. There was a rapid decrease in lipid utilization between October and December, followed by much slower decreases until June. Lowered respiration rates or the availability of different types or quantities of food in the winter and spring are possible explantions for the slower rate of lipid use. Laboratory starvation experiments for up to 90 days correlated with results from the field. Gas-liquid chromatographic studies of the lipids showed that both the alcohols and fatty acids of the wax esters were highly variable with season and depth, whereas the phospholipid fatty acids were not affected by changes in these parameters. Only summer samples bad wax esters with a phytoplankton-like fatty acid composition, and upper water winter copepods had wax esters with little polyunsaturation. The deep-water winter copepods had a very different wax-ester composition from the upper water samples, with a predominance of hexadecanol (all other copepod samples had 20:1 and 22:11 as the principal alcohols) and a high content of polyunsaturated acids. Deep-water C. hyperboreas may differ in food habits and life history from those in the upper water community.  相似文献   

20.
The Caribbean reef-building corals Porites porites (Pallas) and Montastrea annularis (Ellis and Solander) and the Red Sea corals Pocillopora verrucosa (Ellis and Solander), Stylophora pistillata (Esper) and Goniastrea retiformis (Lamark) were analysed for total lipid, wax ester and triglyceride content, and fatty acid composition. M. annularis contained about 32% of dry weight as total lipid, whereas much lower values of between 11 and 17% were recorded for the other four species. It is concluded that there is greater variation in coral total lipid than hitherto thought. The total lipid contained a substantial proportion of wax ester (22 to 49%) and triglyceride (18 to 37%). The storage lipids (wax esters and triglycerides) accounted for between 6 and 20% of the dry weight and between 46 and 73% of the total lipid. Variation in lipid content between species could not be attributed to geographical location, but the low values for total lipid in Red Sea corals may in part be due to environmental factors as these samples were collected in winter. All corals analysed contained high levels of saturated fatty acids, the most abundant fatty acids being 16:0, 18:0 and 18:1n-9. Marked differences were observed in polyunsaturated fatty acid (PUFA) content between species, with comparatively low levels of 10 and 11% of fatty acids being recorded in M. annularis and G. retiformis, respectively. The values for the other species ranged between 21 and 37%. Fatty acid composition may vary according to the proportions of fatty acids obtained from diet, algal photosynthesis and synthesis by the animal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号