首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
• Underwater superoleophobic membrane was fabricated by deposition of catechol/chitosan. • The membrane had ultrahigh pure water flux and was stable under harsh pH conditions. • The membrane exhibited remarkable antifouling property in O/W emulsion separation. • The hydration layer on the membrane surface prevented oil droplets adhesion. Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation. However, conventional membranes usually suffer from severe pore clogging and surface fouling, and thus, novel membranes with superior wettability and antifouling features are urgently required. Herein, we report a facile green approach for the development of an underwater superoleophobic microfiltration membrane via one-step oxidant-induced ultrafast co-deposition of naturally available catechol/chitosan on a porous polyvinylidene fluoride (PVDF) substrate. Membrane morphology and surface chemistry were studied using a series of characterization techniques. The as-prepared membrane retained the original pore structure due to the ultrathin and uniform catechol/chitosan coating. It exhibited ultrahigh pure water permeability and robust chemical stability under harsh pH conditions. Moreover, the catechol/chitosan hydrophilic coating on the membrane surface acting as an energetic barrier for oil droplets could minimize oil adhesion on the surface, which endowed the membrane with remarkable antifouling property and reusability in a cyclic oil-in-water (O/W) emulsion separation. The modified membrane exhibited a competitive flux of ~428 L/(m2·h·bar) after three filtration cycles, which was 70% higher than that of the pristine PVDF membrane. These results suggest that the novel underwater superoleophobic membrane can potentially be used for sustainable O/W emulsions separation, and the proposed green facile modification approach can also be applied to other water-remediation materials considering its low cost and simplicity.  相似文献   

2.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   

3.
A novel nanocomposite OMWCNT-A-GO was synthesized by conjugating OMWCNT and GO. The P-OMWCNT-A-GO membrane was fabricated by non-solvent induced phase inversion. The P-OMWCNT-A-GO exhibits the best water flux, BSA rejection and flux recovery. It should be due to the enhanced membrane pore size, porosity and hydrophilicity. Although carbon nanomaterials have been widely used as effective nanofillers for fabrication of mixed matrix membranes (MMMs) with outstanding performances, the reproducibility of the fabricated MMMs is still hindered by the non-homogenous dispersion of these carbon nanofillers in membrane substrate. Herein, we report an effective way to improve the compatibility of carbon-based nanomaterials with membrane matrixes. By chemically conjugating the oxidized CNTs (o-CNTs) and GO using hexanediamine as cross-linker, a novel carbon nanohybrid material (G-CNTs) was synthesized, which inherited both the advanced properties of multi-walled carbon nanotubes (CNTs) and graphene oxide (GO). The G-CNTs incorporated polyvinylidene fluoride (PVDF) MMMs (G-CNTs/PVDF) were fabricated via a non-solvent induced phase separation (NIPS) method. The filtration and antifouling performances of G-CNTs/PVDF were evaluated using distillate water and a 1 g/L bovine serum albumin (BSA) aqueous solution under 0.10 MPa. Compared to the MMMs prepared with o-CNTs, GO, the physical mixture of o-CNTs and GO and pure PVDF membrane, the G-CNTs/PVDF membrane exhibited the highest water flux up to 220 L/m2/h and a flux recovery ratio as high as 90%, as well as the best BSA rejection rate. The excellent performances should be attributed to the increased membrane pore size, porosity and hydrophilicity of the resulted membrane. The successful synthesis of the novel nanohybrid G-CNTs provides a new type of nanofillers for MMMs fabrication.  相似文献   

4.
• Mechanism of DCM disproportionation over mesoporous TiO2 was studied. • DCM was completely eliminated at 350℃ under 1 vol.% humidity. • Anatase (001) was the key for disproportionation. • A competitive oxidation route co-existed with disproportionation. • Disproportionation was favored at low temperature. Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.  相似文献   

5.
• A stable and electroconductive CNTs/ceramic membrane was fabricated. • The membrane with the electro-assistance exhibited optimal fouling mitigation. • The removal efficiency was improved by the -2.0 V electro-assistance. • Electro-assisted filtration is energy-saving than that of commercial membrane. Ultrafiltration is employed as an important process for water treatment and reuse, which is of great significance to alleviate the shortage of water resources. However, it suffers from severe membrane fouling and the trade-off between selectivity and permeability. In this work, a CNTs/ceramic flat sheet ultrafiltration membrane coupled with electro-assistance was developed for improving the antifouling and separation performance. The CNTs/ceramic flat sheet membrane was fabricated by coating cross-linked CNTs on ceramic membrane, featuring a good electroconductivity of 764.75 S/m. In the filtration of natural water, the permeate flux of the membrane with the cell voltage of -2.0 V was 1.8 times higher than that of the membrane without electro-assistance and 5.7-fold greater than that of the PVDF commercial membrane. Benefiting from the electro-assistance, the removal efficiency of the typical antibiotics was improved by 50%. Furthermore, the electro-assisted membrane filtration process showed 70% reduction in energy consumption compared with the filtration process of the commercial membrane. This work offers a feasible approach for membrane fouling mitigation and effluent quality improvement and suggests that the electro-assisted CNTs/ceramic membrane filtration process has great potential in the application of water treatment.  相似文献   

6.
We examined influence of phosphate on transport of TiO2 NPs in soil. Deposition was reduced at higher pH and by adsorption of phosphate in soil. Release was more for NPs initially deposited at higher pH. Release was more for NPs initially deposited in the presence of phosphate. Surface roughness and charge heterogeneity play a role in the deposition/ release. The widespread use of TiO2 nanoparticles (NPs) makes inevitable their release into the soil. Phosphate is also widespread within soil, and is likely copresent with TiO2 NPs. However, the influence of phosphate on deposition/release— and thereby on transport— of TiO2 NPs in soil is yet to be elucidated. In this study we conducted saturated column experiments to systematically examine the transport of TiO2 NPs in soil amended with phosphate at different ionic strengths (ISs) (1, 10, 100 mmol/L NaCl) and pHs (4 and 9). Results show that the deposition of TiO2 NPs decreased with decreasing IS, increasing pH, and when soil absorbed phosphate. These observations are qualitatively in agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy calculations, because the repulsive energy barrier is larger and secondary minimum depth is smaller at a lower IS, higher pH, and in the presence of phosphate. Accordingly, both primary- and secondary-minimum deposition were inhibited. Interestingly, although the deposition was less at higher pH and in the presence of phosphate, the subsequent spontaneous detachment and detachment by reduction of solution IS in these cases were greater. In addition, the presence of phosphate in the solution can cause a small quantity of attached TiO2 NPs to detach, even without perturbations of physical and chemical conditions. Our study was the first to investigate the influence of phosphate on detachment of TiO2 NPs and the results have important implication for accurate prediction of fate and transport of TiO2 NPs in subsurface environments.  相似文献   

7.
• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene. • Catalyst synthesized by vanadyl acetylacetonate showed good activity and stability. • The kinetic model was established and the synergetic activity was predicted. • Both chlorobenzene oxidation and SCR of NO follow pseudo-first-order kinetics. • The work is of much value to design of multi-pollutants emission control system. The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology, which is still in the initial stage and facing many challenges. We developed a V2O5/TiO2 granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene (i.e., an important precursor of dioxins). The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability. Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited, the reaction order of each reaction was not considerably affected, and the pseudo-first-order reaction kinetics was still followed. The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants (i.e., NO and dioxins) emission control.  相似文献   

8.
• UVA pre-irradiation to TiO2 NPs enhanced its toxicity toward plant A. cepa. • UVA TiO2 NPs increased intracellular ROS, resulting in more cell damage. • Cell death enhanced cell permeability and increased uptake of NPs. • Being highly toxic (EC50 = 0.097 µmol/L), TC did not increase ROS generation. • Even at a low dose, TC enhanced the toxic potential of TiO2 NPs significantly. Usage of titanium dioxide nanoparticles (TiO2 NPs) and tetracycline (TC) has increased significantly in the present era. This leads to their release and accumulation in the environment. Both the compounds, individually, can have adverse toxic effects on the plants. Their binary mixtures can increase this degree of damage. The present study aimed to evaluate the toxicity of both the contaminants in individual and binary mixtures in Allium cepa. Further, the toxicity of TiO2 NPs upon UVA pre-irradiation was also measured. Results showed that UVA pre-irradiated NPs (UVA-TiO2 NPs) had a significant decrease in cell viability than their non-irradiated counterparts (NI-TiO2), denoting an increase in photocatalytic activity upon UVA pre-irradiation. Very low concentrations of TC (EC10 = 0.016 µmol/L) mixed with TiO2 NPs significantly increased the toxicity for both UVA-TiO2 and NI-TiO2 NPs. Intracellular ROS generation was significantly high for UVA-TiO2 NPs. However, TC did not have any effects on ROS production. Both the compounds exhibited genotoxic potential in A. cepa. Different chromosomal abnormalities like anaphase bridges, telophase bridges, laggard chromosomes, binucleate cells, etc. were observed. The binary mixture of UVA-TiO2 NPs and TC showed the highest chromosomal aberrations (64.0%±1.26%) than the mixture with NI-TiO2 or the individual contaminants. This decreased significantly after recovery (46.8%±1.92%), denoting the self-repair processes. This study proved that UVA-TiO2 NPs were more toxic and could be enhanced further when mixed with a sub-lethal concentration of TC. This work will help to assess the risk of both compounds in the environment.  相似文献   

9.
• Cellulose-based membrane separates oily wastewater mimicking the living things. • The three central surface mechanisms were reviewed. • Preparation, performance, and mechanism are critically evaluated. • First review of wettability based cellulose membrane as major material. • The current and future importance of the research are discussed. It is challenging to purify oily wastewater, which affects water-energy-food production. One promising method is membrane-based separation. This paper reviews the current research trend of applying cellulose as a membrane material that mimics one of three typical biostructures: superhydrophobic, underwater superoleophobic, and Janus surfaces. Nature has provided efficient and effective structures through the evolutionary process. This has inspired many researchers to create technologies that mimic nature’s structures or the fabrication process. Lotus leaves, fish scales, and Namib beetles are three representative structures with distinct functional and surface properties: superhydrophobic, underwater superoleophobic, and Janus surfaces. The characteristics of these structures have been widely studied and applied to membrane materials to improve their performance. One attractive membrane material is cellulose, which has been studied from the perspective of its biodegradability and sustainability. In this review, the principles, mechanisms, fabrication processes, and membrane performances are summarized and compared. The theory of wettability is also described to build a comprehensive understanding of the concept. Finally, future outlook is discussed to challenge the gap between laboratory and industrial applications.  相似文献   

10.
• Synthesized few-layered MoS2 nanosheets via surfactant-assisted hydrothermal method. • Synthesized MoS2 nanosheets show petal-like morphology. • Adsorbent showed 93% of mercury removal efficiency. • The adsorption of mercury is attributed to negative zeta potential (-21.8 mV). Recently, different nanomaterial-based adsorbents have received greater attention for the removal of environmental pollutants, specifically heavy metals from aqueous media. In this work, we synthesized few-layered MoS2 nanosheets via a surfactant-assisted hydrothermal method and utilized them as an efficient adsorbent for the removal of mercury from aqueous media. The synthesized MoS2 nanosheets showed petal-like morphology as confirmed by scanning electron microscope and high-resolution transmission electron microscopic analysis. The average thickness of the nanosheets is found to be about 57 nm. Possessing high stability and negative zeta potential makes this material suitable for efficient adsorption of mercury from aqueous media. The adsorption efficiency of the adsorbent was investigated as a function of pH, contact time and adsorbent dose. The kinetics of adsorption and reusability potential of the adsorbent were also performed. A pseudo-second-order kinetics for mercury adsorption was observed. As prepared MoS2 nanosheets showed 93% mercury removal efficiency, whereas regenerated adsorbent showed 91% and 79% removal efficiency in the respective 2nd and 3rd cycles. The adsorption capacity of the adsorbent was found to be 289 mg/g at room temperature.  相似文献   

11.
CNT-PVA membrane was fabricated and compared with polymeric membranes. The separation performance was evaluated by homemade and cutting fluid emulsions. The three membranes show similar oil retention rates. CNT-PVA membranes have higher permeation fluxes compared with polymeric membranes. CNT-PVA membrane shows higher fouling resistance. Membrane separation is an attractive technique for removal of emulsified oily wastewater. However, polymeric membranes which dominate the current market usually suffer from severe membrane fouling. Therefore, membranes with high fouling resistance are imperative to treat emulsified oily wastewater. In this study, carbon nanotube-polyvinyl alcohol (CNT-PVA) membrane was fabricated. And its separation performance for emulsified oily wastewater was compared with two commercial polymeric membranes (PVDF membrane and PES membrane) by filtration of two homemade emulsions and one cutting fluid emulsion. The results show that these membranes have similar oil retention efficiencies for the three emulsions. Whereas, the permeation flux of CNT-PVA membrane is 1.60 to 3.09 times of PVDF membrane and 1.41 to 11.4 times of PES membrane, respectively. Moreover, after five consecutive operation circles of filtration process and back flush, CNT-PVA membrane can recover 62.3% to 72.9% of its initial pure water flux. However, the pure water flux recovery rates are only 24.1% to 35.3% for PVDF membrane and 6.0% to 26.3% for PES membrane, respectively. Therefore, CNT-PVA membrane are more resistant to oil fouling compared with the two polymeric membranes, showing superior potential in treatment of emulsified oily wastewater.  相似文献   

12.
CNT-TiO2 composite is used to activate PMS under UV-light assistance. Superior performance is due to the enhanced electron-transfer ability of CNT. SO4, •OH and 1O2 play key roles in the degradation of organic pollutants. In this work, a UV-light assisted peroxymonosulfate (PMS) activation system was constructed with the composite catalyst of multi-walled carbon nanotubes (CNT) - titanium dioxide (TiO2). Under the UV light irradiation, the photoinduced electrons generated from TiO2 could be continuously transferred to CNT for the activation of PMS to improve the catalytic performance of organic pollutant degradation. Meanwhile, the separation of photoinduced electron-hole pairs could enhance the photocatalysis efficiency. The electron spin resonance spectroscopy (EPR) and quenching experiments confirmed the generation of sulfate radical (SO4), hydroxyl radical (•OH) and singlet oxygen (1O2) in the UV/PMS/20%CNT-TiO2 system. Almost 100% phenol degradation was observed within 20 min UV-light irradiation. The kinetic reaction rate constant of the UV/PMS/20%CNT-TiO2 system (0.18 min1) was 23.7 times higher than that of the PMS/Co3O4 system (0.0076 min1). This higher catalytic performance was ascribed to the introduction of photoinduced electrons, which could enhance the activation of PMS by the transfer of electrons in the UV/PMS/CNT-TiO2 system.  相似文献   

13.
•ZnO/Perlite inactivated 72% of bioaerosols in continuous gas phase. •TiO2 triggered the highest level of cytotoxicity with 95% dead cells onto Poraver. •Inactivation mechanism occurred by membrane damage, morphological changes and lysis. •ZnO/Poraver showed null inactivation of bioaerosols. •Catalysts losses at the outlet of the photoreactor for all systems were negligible. Bioaerosols are airborne microorganisms that cause infectious sickness, respiratory and chronic health issues. They have become a latent threat, particularly in indoor environment. Photocatalysis is a promising process to inactivate completely bioaerosols from air. However, in systems treating a continuous air flow, catalysts can be partially lost in the gaseous effluent. To avoid such phenomenon, supporting materials can be used to fix catalysts. In the present work, four photocatalytic systems using Perlite or Poraver glass beads impregnated with ZnO or TiO2 were tested. The inactivation mechanism of bioaerosols and the cytotoxic effect of the catalysts to bioaerosols were studied. The plug flow photocatalytic reactor treated a bioaerosol flow of 460×1 06 cells/m3air with a residence time of 5.7 s. Flow Cytometry (FC) was used to quantify and characterize bioaerosols in terms of dead, injured and live cells. The most efficient system was ZnO/Perlite with 72% inactivation of bioaerosols, maintaining such inactivation during 7.5 h due to the higher water retention capacity of Perlite (2.8 mL/gPerlite) in comparison with Poraver (1.5 mL/gPerlite). However, a global balance showed that TiO2/Poraver system triggered the highest level of cytotoxicity to bioaerosols retained on the support after 96 h with 95% of dead cells. SEM and FC analyses showed that the mechanism of inactivation with ZnO was based on membrane damage, morphological cell changes and cell lysis; whereas only membrane damage and cell lysis were involved with TiO2. Overall, results highlighted that photocatalytic technologies can completely inactivate bioaerosols in indoor environments.  相似文献   

14.
• Bi doping in TiO2 enhanced the separation of photo-generated electron-hole. • The performance of photocatalytic degradation of MC-LR was improved. • Coexisting substances have no influence on algal removal performance. • The key reactive oxygen species were h+ and OH in the photocatalytic process. The increase in occurrence and severity of cyanobacteria blooms is causing increasing concern; moreover, human and animal health is affected by the toxic effects of Microcystin-LR released into the water. In this paper, a floating photocatalyst for the photocatalytic inactivation of the harmful algae Microcystis aeruginosa (M. aeruginosa) was prepared using a simple sol-gel method, i.e., coating g-C3N4 coupled with Bi-doped TiO2 on Al2O3-modified expanded perlite (CBTA for short). The impact of different molar ratios of Bi/Ti on CBTA was considered. The results indicated that Bi doping in TiO2 inhibited photogenerated electron-hole pair recombination. With 6 h of visible light illumination, 75.9% of M. aeruginosa (initial concentration= 2.7 × 106 cells/L) and 83.7% of Microcystin-LR (initial concentration= 100 μg/L) could be removed with the addition of 2 g/L CBTA-1% (i.e., Bi/Ti molar ratio= 1%). The key reactive oxygen species (ROSs) in the photocatalytic inactivation process are h+ and OH. The induction of the Bi4+/Bi3+ species by the incorporation of Bi could narrow the bandgap of TiO2, trap electrons, and enhance the stability of CBTA-1% in the solutions with coexisting environmental substances.  相似文献   

15.
• Photocatalytic activity was improved in TiO2 thin film by rapid thermal annealing. • Photoreactor was designed for TiO2 thin film. • Considerable reusability and durability of prepared photocatalysts were studied. Un-biodegradable pharmaceuticals are one of the major growing threats in the wastewaters. In the current study, TiO2 thin film photocatalysts were designed by nanocrystal engineering and fabricated for degradation of the acetaminophen (ACE) in a photocatalytic reaction under UV light irradiation in batch and continuous systems. The photocatalyst was prepared by sputtering and then engineered by thermal treatment (annealing at 300℃ (T300) and 650℃ (T650)). The annealing effects on the crystallinity and photocatalytic activity of the TiO2 film were completely studied; it was found that annealing at higher temperatures increases the surface roughness and grain size which are favorable for photocatalytic activity due to the reduction in the recombination rate of photo-generated electron-hole pairs. For the continuous system, a flat plate reactor (FPR) was designed and manufactured. The photocatalytic performance was decreased with the increase of flow rate because the higher flow rate caused to form the thicker film of the liquid in the reactor and reduced the UV light received by photocatalyst. The reusability and durability of the samples after 6 h of photocatalytic reaction showed promising performance for the T650 sample (annealed samples in higher temperatures).  相似文献   

16.
• Sub-inhibitory levels of nC60 promote conjugative transfer of ARGs. • nC60 can induce ROS generation, oxidative stress and SOS response. • nC60 can increase cell membrane permeability and alter gene expression. • Results provide evidence of nC60 promoting antibiotic resistance dissemination. The spread and development of antibiotic resistance globally have led to severe public health problems. It has been shown that some non-antibiotic substances can also promote the diffusion and spread of antibiotic resistance genes (ARGs). Nanofullerene (nC60) is a type of nanomaterial widely used around the world, and some studies have discovered both the biological toxicity and environmental toxicity of nC60. In this study, cellular and molecular biology techniques were employed to investigate the influences of nC60 at sub-minimum inhibitory concentrations (sub-MICs) on the conjugation of ARGs between the E. coli strains. Compared with the control group, nC60 significantly increased the conjugation rates of ARGs by 1.32‒10.82 folds within the concentration range of 7.03‒1800 mg/L. This study further explored the mechanism of this phenomenon, finding that sub-MICs of nC60 could induce the production of reactive oxygen species (ROS), trigger SOS-response and oxidative stress, affect the expression of outer membrane proteins (OMPs) genes, increase membrane permeability, and thus promote the occurrence of conjugation. This research enriches our understanding of the environmental toxicity of nC60, raises our risk awareness toward nC60, and may promote the more rational employment of nC60 materials.  相似文献   

17.
• The g-MoS2 coated composites (g-MoS2-BC) were synthesized. • The coated g-MoS2 greatly increased the adsorption ability of biochar. • The synergistic effect was observed for CIP adsorption on g-MoS2-RC700. • The adsorption mechanisms of CIP on g-MoS2-BC were proposed. The g-MoS2 coated biochar (g-MoS2-BC) composites were synthesized by coating original biochar with g-MoS2 nanosheets at 300°C(BC300)/700°C (BC700). The adsorption properties of the g-MoS2-BC composites for ciprofloxacin (CIP) were investigated with an aim to exploit its high efficiency toward soil amendment. The specific surface area and the pore structures of biochar coated g-MoS2 nanosheets were significantly increased. The g-MoS2-BC composites provided more π electrons, which was favorable in enhancing the π-π electron donor-acceptor (EDA) interactions between CIP and biochar. As a result, the g-MoS2-BC composites showed faster adsorption rate and greater adsorption capacity for CIP than the original biochar. The coated g-MoS2 nanosheets contributed more to CIP adsorption on the g-MoS2-BC composites due to their greater CIP adsorption capacity than the original biochar. Moreover, the synergistic effect was observed for CIP adsorption on g-MoS2-BC700, and suppression effect on g-MoS2-BC300. In addition, the adsorption of CIP onto g-MoS2-BC composites also exhibited strong dependence on the solution pH, since it can affect both the adsorbent surface charge and the speciation of contaminants. It was reasonably suggested that the mechanisms of CIP adsorption on g-MoS2-BC composites involved pore-filling effects, π-π EDA interaction, electrostatic interaction, and ion exchange interaction. These results are useful for the modification of biochar in exploiting the novel amendment for contaminated soils.  相似文献   

18.
Four NF membranes were compared regarding arsenate rejection and their properties. Rejection of arsenate had no relationship with membrane pore size. A more negative surface charge was favorable for arsenate rejection at neutral pH. A severe membrane fouling could lead to a great reduction of arsenic rejection. Nanofiltration (NF) has a great potential in removing arsenate from contaminated water. The performance including arsenate rejection, water permeability and resistance to fouling could however differ substantially among NF membranes. This study was conducted to investigate the influence of membrane pore size and surface properties on these aspects of membrane performance. Four fully-aromatic NF membranes with different physicochemical properties were adopted for this study. The results showed that surface charge, hydrophobicity, roughness and pore size could affect water permeability and/or arsenate rejection considerably. A more negative surface charge was desirable to enhance arsenate rejection rates. NF90 and a non-commercialized membrane (M#1) demonstrated the best performance in terms of arsenate rejection and water permeability. The M#1 membrane showed less membrane fouling than NF90 when used for filtration of real arsenic-containing groundwater. This was mainly due to its distinct chemical composition and surface properties. A severe membrane fouling could lead to a substantial reduction of arsenic rejection. The M#1 membrane showed the best performance, which indicated that membrane modification could indeed enhance the overall membrane performance for water treatment.  相似文献   

19.
• A novel Z-scheme Si-SnO2-TiOx with SnO2 as electron mediator is first constructed. • Transparent and conductive SnO2 can pass light through and promote charge transport. • VO from SnO2 and TiOx improve photoelectrochemical performances. • Efficient photocatalytic degradations originate from the Z scheme construction. Z-scheme photocatalysts, with strong redox ability, have a great potential for pollutants degradation. However, it is challenging to construct efficient Z-scheme photocatalysts because of their poor interfacial charge separation. Herein, by employing transparent and conductive SnO2 as electron mediator to pass light through and promote interfacial charge transportation, a novel Z-scheme photocatalyst Si-SnO2-TiOx (1<x<2) was constructed. The Z-scheme photocatalyst displayed an order of magnitude higher photocurrent density and a 4-fold increase in open-circuit potential compared to those of Si. Moreover, the onset potential shifted negatively for approximately 2.2 V. Benefiting from these advantages, this Z-scheme Si-SnO2-TiOx exhibited efficient photocatalytic performance toward phenol degradation and mineralization. 75% of the phenol was degraded without bias potential and 70% of the TOC was removed during phenol degradation. Other typical pollutants such as bisphenol A and atrazine could also be degraded without bias potential. Introducing a transparent and conductive electron mediator to construct Z-scheme photocatalyst gives a new sight to the improvement of photocatalytic performance in Z scheme.  相似文献   

20.
GO or RGO promotes bromate formation during ozonation of bromide-containing water. CeO2/RGO significantly inhibits bromate formation compared to RGO during ozonation. CeO2/RGO shows an enhancement on DEET degradation efficiency during ozonation. Ozone (O3) is widely used in drinking water disinfection and wastewater treatment. However, when applied to bromide-containing water, ozone induces the formation of bromate, which is carcinogenic. Our previous study found that graphene oxide (GO) can enhance the degradation efficiency of micropollutants during ozonation. However, in this study, GO was found to promote bromate formation during ozonation of bromide-containing waters, with bromate yields from the O3/GO process more than twice those obtained using ozone alone. The promoted bromate formation was attributed to increased hydroxyl radical production, as confirmed by the significant reduction (almost 75%) in bromate yield after adding t-butanol (TBA). Cerium oxide (less than 5 mg/L) supported on reduced GO (xCeO2/RGO) significantly inhibited bromate formation during ozonation compared with reduced GO alone, and the optimal Ce atomic percentage (x) was determined to be 0.36%, achieving an inhibition rate of approximately 73%. Fourier transform infrared (FT-IR) spectra indicated the transformation of GO into RGO after hydrothermal treatment, and transmission electron microscope (TEM) results showed that CeO2 nanoparticles were well dispersed on the RGO surface. The X-ray photoelectron spectroscopy (XPS) spectra results demonstrated that the Ce3+/Ce4+ ratio in xCeO2/RGO was almost 3‒4 times higher than that in pure CeO2, which might be attributed to the charge transfer effect from GO to CeO2. Furthermore, Ce3+ on the xCeO2/RGO surface could quench Br⋅ and BrO⋅ to further inhibit bromate formation. Meanwhile, 0.36CeO2/RGO could also enhance the degradation efficiency of N,N-diethyl-m-toluamide (DEET) in synthetic and reclaimed water during ozonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号