首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
• Underwater superoleophobic membrane was fabricated by deposition of catechol/chitosan. • The membrane had ultrahigh pure water flux and was stable under harsh pH conditions. • The membrane exhibited remarkable antifouling property in O/W emulsion separation. • The hydration layer on the membrane surface prevented oil droplets adhesion. Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation. However, conventional membranes usually suffer from severe pore clogging and surface fouling, and thus, novel membranes with superior wettability and antifouling features are urgently required. Herein, we report a facile green approach for the development of an underwater superoleophobic microfiltration membrane via one-step oxidant-induced ultrafast co-deposition of naturally available catechol/chitosan on a porous polyvinylidene fluoride (PVDF) substrate. Membrane morphology and surface chemistry were studied using a series of characterization techniques. The as-prepared membrane retained the original pore structure due to the ultrathin and uniform catechol/chitosan coating. It exhibited ultrahigh pure water permeability and robust chemical stability under harsh pH conditions. Moreover, the catechol/chitosan hydrophilic coating on the membrane surface acting as an energetic barrier for oil droplets could minimize oil adhesion on the surface, which endowed the membrane with remarkable antifouling property and reusability in a cyclic oil-in-water (O/W) emulsion separation. The modified membrane exhibited a competitive flux of ~428 L/(m2·h·bar) after three filtration cycles, which was 70% higher than that of the pristine PVDF membrane. These results suggest that the novel underwater superoleophobic membrane can potentially be used for sustainable O/W emulsions separation, and the proposed green facile modification approach can also be applied to other water-remediation materials considering its low cost and simplicity.  相似文献   

2.
• Shale oil and gas production generates wastewater with complex composition. • Membrane technologies emerged for the treatment of shale oil and gas wastewater. • Membrane technologies should tolerate high TDS and consume low primary energy. • Pretreatment is a key component of integrated wastewater treatment systems. • Full-scale implementation of membrane technologies is highly desirable. Shale oil and gas exploitation not only consumes substantial amounts of freshwater but also generates large quantities of hazardous wastewater. Tremendous research efforts have been invested in developing membrane-based technologies for the treatment of shale oil and gas wastewater. Despite their success at the laboratory scale, membrane processes have not been implemented at full scale in the oil and gas fields. In this article, we analyze the growing demands of wastewater treatment in shale oil and gas production, and then critically review the current stage of membrane technologies applied to the treatment of shale oil and gas wastewater. We focus on the unique niche of those technologies due to their advantages and limitations, and use mechanical vapor compression as the benchmark for comparison. We also highlight the importance of pretreatment as a key component of integrated treatment trains, in order to improve the performance of downstream membrane processes and water product quality. We emphasize the lack of sufficient efforts to scale up existing membrane technologies, and suggest that a stronger collaboration between academia and industry is of paramount importance to translate membrane technologies developed in the laboratory to the practical applications by the shale oil and gas industry.  相似文献   

3.
• A survey on individual’s perception of SARS-CoV-2 transmission was conducted. • Waterborne transmission risks are far less perceived by individuals. • Precautions of preventing wastewater mediated transmission are implemented. • The precautions for wastewater transmission are less favored by the public. • Education level differs the most regarding to waterborne transmission perception. SARS-CoV-2 has been detected in various environmental media. Community and individual-engaged precautions are recommended to stop or slow environmentally-mediated transmission. To better understand the individual’s awareness of and precaution to environmental dissemination of SARS-CoV-2, an online survey was conducted in Beijing during March 14–25, 2020. It is found that the waterborne (especially wastewater mediated) spreading routes are far less perceived by urban communities. The precautions for wastewater transmission are less favored by the public than airborne and solid waste mediated spreading routes. Such risk communication asymmetry in waterborne transmission will be further enlarged in places with fragile water system. Furthermore, education level is the most significant attribution (Sig.<0.05) that causes the difference of awareness and precautions of the waterborne transmission among the respondents, according to the variance analysis results. Our survey results emphasize the urgent need for evidence-based, multifactorial precautions for current and future outbreaks of COVID-19.  相似文献   

4.
• Mitigating energy utilization and carbon emission is urgent for wastewater treatment. • MPEC integrates both solar energy storage and wastewater organics removal. • Energy self-sustaining MPEC allows to mitigate the fossil carbon emission. • MPEC is able to convert CO2 into storable carbon fuel using renewable energy. • MPEC would inspire photoelectrochemistry by employing a novel oxidation reaction. Current wastewater treatment (WWT) is energy-intensive and leads to vast CO2 emissions. Chinese pledge of “double carbon” target encourages a paradigm shift from fossil fuels use to renewable energy harvesting during WWT. In this context, hybrid microbial photoelectrochemical (MPEC) system integrating microbial electrochemical WWT with artificial photosynthesis (APS) emerges as a promising approach to tackle water-energy-carbon challenges simultaneously. Herein, we emphasized the significance to implement energy recovery during WWT for achieving the carbon neutrality goal. Then, we elucidated the working principle of MPEC and its advantages compared with conventional APS, and discussed its potential in fulfilling energy self-sustaining WWT, carbon capture and solar fuel production. Finally, we provided a strategy to judge the carbon profit by analysis of energy and carbon fluxes in a MPEC using several common organics in wastewater. Overall, MPEC provides an alternative of WWT approach to assist carbon-neutral goal, and simultaneously achieves solar harvesting, conversion and storage.  相似文献   

5.
• Comammox bacteria have unique physiological characteristics. • Comammox bacteria are widely distributed in natural and artificial systems. • Comammox bacteria have the potential to reduce N2O emissions. • Coupling comammox bacteria with DEAMOX can be promoted in wastewater treatment. • Comammox bacteria have significant potential for enhancing total nitrogen removal. Complete ammonia oxidizing bacteria, or comammox bacteria (CAOB), can oxidize ammonium to nitrate on its own. Its discovery revolutionized our understanding of biological nitrification, and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle. Its wide distribution, adaptation to oligotrophic medium, and diverse metabolic pathways, means extensive research on CAOB and its application in water treatment can be promoted. Furthermore, the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment. This paper provides an overview of the discovery and environmental distribution of CAOB, as well as the physiological characteristics of the microorganisms, such as nutrient medium, environmental factors, enzymes, and metabolism, focusing on future research and the application of CAOB in wastewater treatment. Further research should be carried out on the physiological characteristics of CAOB, to analyze its ecological niche and impact factors, and explore its application potential in wastewater treatment nitrogen cycle improvement.  相似文献   

6.
• A novel conductive carbon black modified lead dioxide electrode is synthesized. • The modified PbO2 electrode exhibits enhanced electrochemical performances. • BBD method could predict optimal experiment conditions accurately and reliably. • The modified electrode possesses outstanding reusability and safety. The secondary pollution caused by modification of an electrode due to doping of harmful materials has long been a big concern. In this study, an environmentally friendly material, conductive carbon black, was adopted for modification of lead dioxide electrode (PbO2). It was observed that the as-prepared conductive carbon black modified electrode (C-PbO2) exhibited an enhanced electrocatalytical performance and more stable structure than a pristine PbO2 electrode, and the removal efficiency of metronidazole (MNZ) and COD by a 1.0% C-PbO2 electrode at optimal conditions was increased by 24.66% and 7.01%, respectively. Results revealed that the electrochemical degradation of MNZ wastewater followed pseudo-first-order kinetics. This intimates that the presence of conductive carbon black could improve the current efficiency, promote the generation of hydroxyl radicals, and accelerate the removal of MNZ through oxidation. In addition, MNZ degradation pathways through a C-PbO2 electrode were proposed based on the identified intermediates. To promote the electrode to treat antibiotic wastewater, optimal experimental conditions were predicted through the Box-Behnken design (BBD) method. The results of this study suggest that a C-PbO2 electrode may represent a promising functional material to pretreat antibiotic wastewaters.  相似文献   

7.
•Phages can be better indicators of enteric viruses than fecal indicator bacteria. •Multiple phages should be added to the microbial source tracking toolbox. •Engineered phage or phage cocktail can effectively target resistant bacteria. •In phage use, phage-mediated horizontal gene transfer cannot be ignored. •More schemes are needed to prevent phage concentration from decreasing. Wastewater is a breeding ground for many pathogens, which may pose a threat to human health through various water transmission pathways. Therefore, a simple and effective method is urgently required to monitor and treat wastewater. As bacterial viruses, bacteriophages (phages) are the most widely distributed and abundant organisms in the biosphere. Owing to their capacity to specifically infect bacterial hosts, they have recently been used as novel tools in water pollution control. The purpose of this review is to summarize and evaluate the roles of phages in monitoring pathogens, tracking pollution sources, treating pathogenic bacteria, infecting bloom-forming cyanobacteria, and controlling bulking sludge and biofilm pollution in wastewater treatment systems. We also discuss the limitations of phage usage in water pollution control, including phage-mediated horizontal gene transfer, the evolution of bacterial resistance, and phage concentration decrease. This review provides an integrated outlook on the use of phages in water pollution control.  相似文献   

8.
• Distribution of ARGs in decentralized sewage facilities were investigated. • Bacitracin-ARGs were most predominant ARGs in rural wastewater. • ARGs were identified in bacterial and viral community. • ARGs of rpoB, drfE, gyrA and parC were both correlated with bacteria and phages. • More attention should be paid to the risk of spreading ARG by phages. The distribution of antibiotic resistance genes (ARGs) has been intensively studied in large-scale wastewater treatment plants and livestock sources. However, small-scale decentralized sewage treatment facilities must also be explored due to their possible direct exposure to residents. In this study, six wastewater treatment facilities in developed rural areas in eastern China were investigated to understand their risks of spreading ARGs. Using metagenomics and network analysis tools, ARGs and bacterial and viral communities were identified in the influent (INF) and effluent (EFF) samples. The dominant ARGs belonged to the bacitracin class, which are different from most of municipal wastewater treatment plants (WWTPs). The dominant hosts of ARGs are Acidovorax in bacterial communities and Prymnesiovirus in viral communities. Furthermore, a positive relationship was found between ARGs and phages. The ARGs significantly correlated with phages were all hosted by specific genera of bacteria, indicating that phages had contributed to the ARG’s proliferation in sewage treatment facilities. Paying significant concern on the possible enhanced risks caused by bacteria, viruses and their related ARGs in decentralized sewage treatment facilities is necessary.  相似文献   

9.
• The membrane bioreactor cost decreased by 38.2% by decreasing HRT from 72 h to 36 h. • Capital and operation costs contributed 62.1% and 37.9% to decreased costs. • The membrane bioreactor is 32.6% cheaper than the oxidation ditch for treatment. • The effluent COD also improved from 709.93±62.75 mg/L to 280±17.32 mg/L. • Further treatment also benefited from lower pretreatment investment. A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost. Different hydraulic retention times (72–24 h) were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater. Field experimental data from the membrane bioreactor, both full-scale (500 m3/d) and pilot (1.0 m3/d), were used to calculate the net present value (NPV), incorporating both capital expenditure (CAPEX) and operating expenditure. The results showed that the tank cost was estimated above membrane cost in the membrane bioreactor. The decreased hydraulic retention time from 72 to 36 h reduced the NPV by 38.2%, where capital expenditure contributed 24.2% more than operational expenditure. Tank construction cost was decisive in determining the net present value contributed 62.1% to the capital expenditure. The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane, while flux decline was tolerable. The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent. The upgrade to the membrane bioreactor also benefited further treatments by 10.1%–44.7% lower direct investment.  相似文献   

10.
• Energy is needed to accelerate the biological wastewater treatment. • Electrical energy input in traditional technology is indirect and inefficient. • Direct injection of electricity can be a game changer to maximize energy efficiency. • Microbial electrochemical unit for decentralized wastewater treatment is proposed. It has been more than one century since the activated sludge process was invented. Despite its proven stability and reliability, the energy (especially the electrical energy) use in wastewater treatment should evolve to meet the increasingly urgent demand of energy efficiency. This paper discusses how the energy utilized in conventional biological wastewater treatment can be altered by switching the indirect energy input to a direct electricity injection, which is achieved by the electrode integration providing extra thermodynamic driving force to biodegradation. By using electrodes instead of oxygen as terminal electron acceptors, the electrical energy can be utilized more efficiently, and the key of direct use of electrical energy in biodegradation is the development of highly active electroactive biofilm and the increase of electron transfer between microbes and the electrode. Furthermore, the synergy of different microbial electrochemical units has additional benefit in energy and resource recovery, making wastewater treatment more sustainable.  相似文献   

11.
• Submerged arc plasma was introduced in terms of wastewater treatment. • Ozone oxidation was coupled with submerged arc plasma system. • Ozone was converted into O and O2 by submerged arc plasma. • Decomposition rate was accelerated by submerged arc plasma. • Introduction of ozone led to significant increase in mineralization. Submerged arc plasma technology was assessed for the removal of phenols from wastewater. The OH radicals generated from the boundary between the plasma and waste solution were considered as a significant factor on the degradation reaction. In this study, the effects of highly energetic electrons released from the submerged arc plasma were mainly studied. The highly energetic electrons directly broke the strong chemical bond and locally increased the reaction temperatures in solution. The effects of the submerged-arc plasma on the decomposition of phenol are discussed in terms of the input energy and initial concentration. The single use of submerged arc plasma easily decomposed the phenol but did not increase the mineralization efficiency. Therefore, the submerged arc plasma, coupled with the ozone injection, was investigated. The submerged arc plasma combined with ozone injection had a synergic effect, which led to significant improvements in mineralization with only a small increase in input energy. The decomposition mechanism of phenol by the submerged arc plasma with the ozone was analyzed.  相似文献   

12.
• Fate of microplastics in integrated membrane system for water reuse was investigated. • Integrated membrane system has high removal efficiency (>98%) for microplastics. • Microplastics (>93%) were mainly removed through membrane bioreactor treatment. • Small scale fiber plastics (<200 μm) could break through reverse osmosis (RO) system. • The flux of microplastics maintained at 2.7 × 1011 MPs/d after the RO treatment. Rare information on the fate of microplastics in the integrated membrane system (IMS) system in full-scale wastewater treatment plant was available. The fate of microplastics in IMS in a coastal reclaimed water plant was investigated. The removal rate of microplastics in the IMS system reached 93.2% after membrane bioreactor (MBR) treatment while that further increased to 98.0% after the reverse osmosis (RO) membrane process. The flux of microplastics in MBR effluent was reduced from 1.5 × 1013 MPs/d to 10.2 × 1011 MPs/d while that of the RO treatment decreased to 2.7 × 1011 MPs/d. Small scale fiber plastics (<200 μm) could break through RO system according to the size distribution analysis. The application of the IMS system in the reclaimed water plant could prevent most of the microplastics from being discharged in the coastal water. These findings suggested that the IMS system was more efficient than conventional activated sludge system (CAS) for the removal of microplastics, while the discharge of small scale fiber plastics through the IMS system should also not be neglected because small scale fiber plastics (<200 μm) could break through IMS system equipped with the RO system.  相似文献   

13.
• We created a combined system for treating oilfield polymer-flooding wastewater. • The system was composed of coagulation, hydrolysis acidification and DMBR. • Coagulant integrated with demulsifier dominated the removal of crude oil. • The DMBR proceed efficiently without serious membrane fouling. A combined system composed of coagulation, hydrolysis acidification and dynamic membrane bioreactor (DMBR) was developed for treating the wastewater produced from polymer flooding. Performance and mechanism of the combined system as well as its respective units were also evaluated. The combined system has shown high-capacity to remove all contaminants in the influent. In this work, the coagulant, polyacrylamide-dimethyldiallyammonium chloride-butylacrylate terpolymer (P(DMDAAC-AM-BA)), integrated with demulsifier (SD-46) could remove 91.8% of crude oil and 70.8% of COD. Hydrolysis acidification unit improved the biodegradability of the influent and the experimental results showed that the highest acidification efficiency in hydrolysis acidification reactor was 20.36% under hydraulic retention time of 7 h. The DMBR proceeded efficiently without serious blockage process of membrane fouling, and the concentration of ammonia nitrogen (NH3-N), oil, chemical oxygen demand and biological oxygen demand in effluent were determined to be 3.4±2.1, 0.3±0.6, 89.7±21.3 and 13±4.7 mg/L.  相似文献   

14.
• Actual SAORs was determined using MLVSS and temperature. • Measured SAOR decreased with increasing MLVSS 1.1‒8.7 g/L. • Temperature coefficient (θ) decreased with increasing MLVSS. • Nitrification process was dynamically simulated based on laboratory-scale SBR tests. • A modified model was successfully validated in pilot-scale SBR systems. Measurement and predicted variations of ammonia oxidation rate (AOR) are critical for the optimization of biological nitrogen removal, however, it is difficult to predict accurate AOR based on current models. In this study, a modified model was developed to predict AOR based on laboratory-scale tests and verified through pilot-scale tests. In biological nitrogen removal reactors, the specific ammonia oxidation rate (SAOR) was affected by both mixed liquor volatile suspended solids (MLVSS) concentration and temperature. When MLVSS increased 1.6, 4.2, and 7.1-fold (1.3‒8.9 g/L, at 20°C), the measured SAOR decreased by 21%, 49%, and 56%, respectively. Thereby, the estimated SAOR was suggested to modify when MLVSS changed through a power equation fitting. In addition, temperature coefficient (θ) was modified based on MLVSS concentration. These results suggested that the prediction of variations ammonia oxidation rate in real wastewater treatment system could be more accurate when considering the effect of MLVSS variations on SAOR.  相似文献   

15.
• Bioaerosols are produced in the process of wastewater biological treatment. • The concentration of bioaerosol indoor is higher than outdoor. • Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals. • Inhalation is the main route of exposure of bioaerosol. • Both the workers and the surrounding residents will be affected by the bioaerosol. Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.  相似文献   

16.
• AOA and comammox bacteria can be more abundant and active than AOB/NOB at WWTPs. • Coupled DNRA/anammox and NOx-DAMO/anammox/comammox processes are demonstrated. • Substrate level, SRT and stressors determine the niches of overlooked microbes. • Applications of overlooked microbes in enhancing nitrogen removal are promising. Nitrogen-cycling microorganisms play key roles at the intersection of microbiology and wastewater engineering. In addition to the well-studied ammonia oxidizing bacteria, nitrite oxidizing bacteria, heterotrophic denitrifiers, and anammox bacteria, there are some other N-cycling microorganisms that are less abundant but functionally important in wastewater nitrogen removal. These microbes include, but not limited to ammonia oxidizing archaea (AOA), complete ammonia oxidation (comammox) bacteria, dissimilatory nitrate reduction to ammonia (DNRA) bacteria, and nitrate/nitrite-dependent anaerobic methane oxidizing (NOx-DAMO) microorganisms. In the past decade, the development of high-throughput molecular technologies has enabled the detection, quantification, and characterization of these minor populations. The aim of this review is therefore to synthesize the current knowledge on the distribution, ecological niche, and kinetic properties of these “overlooked” N-cycling microbes at wastewater treatment plants. Their potential applications in novel wastewater nitrogen removal processes are also discussed. A comprehensive understanding of these overlooked N-cycling microbes from microbiology, ecology, and engineering perspectives will facilitate the design and operation of more efficient and sustainable biological nitrogen removal processes.  相似文献   

17.
• Principles and methods for fluorescence EEM are systematically outlined. • Fluorophore peak/region/component and energy information can be extracted from EEM. • EEM can fingerprint the physical/chemical/biological properties of DOM in MBRs. • EEM is useful for tracking pollutant transformation and membrane retention/fouling. • Improvements are still needed to overcome limitations for further studies. The membrane bioreactor (MBR) technology is a rising star for wastewater treatment. The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter (DOM) in the system. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, a powerful tool for the rapid and sensitive characterization of DOM, has been extensively applied in MBR studies; however, only a limited portion of the EEM fingerprinting information was utilized. This paper revisits the principles and methods of fluorescence EEM, and reviews the recent progress in applying EEM to characterize DOM in MBR studies. We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity, wavelength regional distribution, and spectral deconvolution (giving fluorescent component loadings/scores), and discussed how to use the information to interpret the chemical compositions, physiochemical properties, biological activities, membrane retention/fouling behaviors, and migration/transformation fates of DOM in MBR systems. In addition to conventional EEM indicators, novel fluorescent parameters are summarized for potential use, including quantum yield, Stokes shift, excited energy state, and fluorescence lifetime. The current limitations of EEM-based DOM characterization are also discussed, with possible measures proposed to improve applications in MBR monitoring.  相似文献   

18.
• The PNA, denitratation/anammox, and DAMO/anammox process are reviewed together. • Denitratation/anammox-based process is promising in mainstream treatment. • DAMO and denitratation processes realize the higher nitrogen removal efficiency. • The utilization of metabolism diversity of functional microbe is worth exploring. • An effective waste treatment system concept is proposed. Anammox technology has been widely researched over the past 40-year from the laboratory-scale to full-scale. It is well-known that in actual applications, the solo application of anammox is not feasible. Since both ammonium and nitrite are prerequisites based on the reaction mechanism, the pre-treatment of wastewater is necessary. With the combination of anammox process and other pre-treatment processes to treat the actual wastewater, many types of anammox-based processes have been developed with distinct nitrogen removal performance. Thus, in order to heighten the awareness of researchers to the developments and accelerate the application of these processes to the treatment of actual wastewater, the main anammox-based processes are reviewed in this paper. It includes the partial nitritation/anammox process, the denitratation/anammox (PD/A) process, the denitrifying anaerobic methane oxidation/anammox (DAMO/A) process, and more complex deuterogenic processes. These processes have made the breakthroughs in the application of the anammox technology, such as the combination of nitrification and PD/A process can achieve stability and reliability of nitrogen removal in the treatment of mainstream wastewater, the PD/A process and the DAMO/A have brought about further improvements in the total nitrogen removal efficiency of wastewater. The diversity of functional microbe characteristics under the specific condition indicate the wide application potential of anammox-based processes, and further exploration is necessary. A whole waste treatment system concept is proposed through the effective allocation of above mentioned processes, with the maximum recovery of energy and resources, and minimal environmental impact.  相似文献   

19.
• Bacteria could easily and quickly attached onto TEP to form protobiofilms. • TEP-protobiofilm facilitate the transport of bacteria to membrane surface. • More significant flux decline was observed in the presence of TEP-protobiofilms. • Membrane fouling shows higher sensitivity to protobiofilm not to bacteria level. Transparent exopolymer particles (TEPs) are a class of transparent gel-like polysaccharides, which have been widely detected in almost every kind of feed water to membrane systems, including freshwater, seawater and wastewater. Although TEP have been thought to be related to the membrane fouling, little information is currently available for their influential mechanisms and the pertinence to biofouling development. The present study, thus, aims to explore the impact of TEPs on biofouling development during ultrafiltration. TEP samples were inoculated with bacteria for several hours before filtration and the formation of “protobiofilm” (pre-colonized TEP by bacteria) was examined and its influence on biofouling was determined. It was observed that the bacteria can easily and quickly attach onto TEPs and form protobiofilms. Ultrafiltration experiments further revealed that TEP-protobiofilms served as carriers which facilitated and accelerated transport of bacteria to membrane surface, leading to rapid development of biofouling on the ultrafiltration membrane surfaces. Moreover, compared to the feed water containing independent bacteria and TEPs, more flux decline was observed with TEP-protobiofilms. Consequently, it appeared from this study that TEP-protobiofilms play a vital role in the development of membrane biofouling, but unfortunately, this phenomenon has been often overlooked in the literature. Obviously, these findings in turn may also challenge the current understanding of organic fouling and biofouling as membrane fouling caused by TEP-protobiofilm is a combination of both. It is expected that this study might promote further research in general membrane fouling mechanisms and the development of an effective mitigation strategy.  相似文献   

20.
• Ceramic membrane filtration showed high performance for surface water treatment. • PTC pre-coagulation could enhance ceramic membrane filtration performance. • Ceramic membrane fouling was investigated by four varied mathematical models. • PTC pre-coagulation was high-effective for ceramic membrane fouling control. Application of ceramic membrane (CM) with outstanding characteristics, such as high flux and chemical-resistance, is inevitably restricted by membrane fouling. Coagulation was an economical and effective technology for membrane fouling control. This study investigated the filtration performance of ceramic membrane enhanced by the emerging titanium-based coagulant (polytitanium chloride, PTC). Particular attention was paid to the simulation of ceramic membrane fouling using four widely used mathematical models. Results show that filtration of the PTC-coagulated effluent using flat-sheet ceramic membrane achieved the removal of organic matter up to 78.0%. Permeate flux of ceramic membrane filtration reached 600 L/(m2·h), which was 10-fold higher than that observed with conventional polyaluminum chloride (PAC) case. For PTC, fouling of the ceramic membrane was attributed to the formation of cake layer, whereas for PAC, standard filtration/intermediate filtration (blocking of membrane pores) was also a key fouling mechanism. To sum up, cross-flow filtration with flat-sheet ceramic membranes could be significantly enhanced by titanium-based coagulation to produce both high-quality filtrate and high-permeation flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号