首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• Energy is needed to accelerate the biological wastewater treatment. • Electrical energy input in traditional technology is indirect and inefficient. • Direct injection of electricity can be a game changer to maximize energy efficiency. • Microbial electrochemical unit for decentralized wastewater treatment is proposed. It has been more than one century since the activated sludge process was invented. Despite its proven stability and reliability, the energy (especially the electrical energy) use in wastewater treatment should evolve to meet the increasingly urgent demand of energy efficiency. This paper discusses how the energy utilized in conventional biological wastewater treatment can be altered by switching the indirect energy input to a direct electricity injection, which is achieved by the electrode integration providing extra thermodynamic driving force to biodegradation. By using electrodes instead of oxygen as terminal electron acceptors, the electrical energy can be utilized more efficiently, and the key of direct use of electrical energy in biodegradation is the development of highly active electroactive biofilm and the increase of electron transfer between microbes and the electrode. Furthermore, the synergy of different microbial electrochemical units has additional benefit in energy and resource recovery, making wastewater treatment more sustainable.  相似文献   

2.
• Submerged arc plasma was introduced in terms of wastewater treatment. • Ozone oxidation was coupled with submerged arc plasma system. • Ozone was converted into O and O2 by submerged arc plasma. • Decomposition rate was accelerated by submerged arc plasma. • Introduction of ozone led to significant increase in mineralization. Submerged arc plasma technology was assessed for the removal of phenols from wastewater. The OH radicals generated from the boundary between the plasma and waste solution were considered as a significant factor on the degradation reaction. In this study, the effects of highly energetic electrons released from the submerged arc plasma were mainly studied. The highly energetic electrons directly broke the strong chemical bond and locally increased the reaction temperatures in solution. The effects of the submerged-arc plasma on the decomposition of phenol are discussed in terms of the input energy and initial concentration. The single use of submerged arc plasma easily decomposed the phenol but did not increase the mineralization efficiency. Therefore, the submerged arc plasma, coupled with the ozone injection, was investigated. The submerged arc plasma combined with ozone injection had a synergic effect, which led to significant improvements in mineralization with only a small increase in input energy. The decomposition mechanism of phenol by the submerged arc plasma with the ozone was analyzed.  相似文献   

3.
• MES was constructed for simultaneous ammonia removal and acetate production. • Energy consumption was different for total nitrogen and ammonia nitrogen removal. • Energy consumption for acetate production was about 0.04 kWh/g. • Nitrate accumulation explained the difference of energy consumption. • Transport of ammonia and acetate across the membrane deteriorated the performance. Microbial electrosynthesis (MES) is an emerging technology for producing chemicals, and coupling MES to anodic waste oxidation can simultaneously increase the competitiveness and allow additional functions to be explored. In this study, MES was used for the simultaneous removal of ammonia from synthetic urine and production of acetate from CO2. Using graphite anode, 83.2%±5.3% ammonia removal and 28.4%±9.9% total nitrogen removal was achieved, with an energy consumption of 1.32 kWh/g N for total nitrogen removal, 0.45 kWh/g N for ammonia nitrogen removal, and 0.044 kWh/g for acetate production. Using boron-doped diamond (BDD) anode, 70.9%±12.1% ammonia removal and 51.5%±11.8% total nitrogen removal was obtained, with an energy consumption of 0.84 kWh/g N for total nitrogen removal, 0.61 kWh/g N for ammonia nitrogen removal, and 0.043 kWh/g for acetate production. A difference in nitrate accumulation explained the difference of total nitrogen removal efficiencies. Transport of ammonia and acetate across the membrane deteriorated the performance of MES. These results are important for the development of novel electricity-driven technologies for chemical production and pollution removal.  相似文献   

4.
• A survey on individual’s perception of SARS-CoV-2 transmission was conducted. • Waterborne transmission risks are far less perceived by individuals. • Precautions of preventing wastewater mediated transmission are implemented. • The precautions for wastewater transmission are less favored by the public. • Education level differs the most regarding to waterborne transmission perception. SARS-CoV-2 has been detected in various environmental media. Community and individual-engaged precautions are recommended to stop or slow environmentally-mediated transmission. To better understand the individual’s awareness of and precaution to environmental dissemination of SARS-CoV-2, an online survey was conducted in Beijing during March 14–25, 2020. It is found that the waterborne (especially wastewater mediated) spreading routes are far less perceived by urban communities. The precautions for wastewater transmission are less favored by the public than airborne and solid waste mediated spreading routes. Such risk communication asymmetry in waterborne transmission will be further enlarged in places with fragile water system. Furthermore, education level is the most significant attribution (Sig.<0.05) that causes the difference of awareness and precautions of the waterborne transmission among the respondents, according to the variance analysis results. Our survey results emphasize the urgent need for evidence-based, multifactorial precautions for current and future outbreaks of COVID-19.  相似文献   

5.
• Shale oil and gas production generates wastewater with complex composition. • Membrane technologies emerged for the treatment of shale oil and gas wastewater. • Membrane technologies should tolerate high TDS and consume low primary energy. • Pretreatment is a key component of integrated wastewater treatment systems. • Full-scale implementation of membrane technologies is highly desirable. Shale oil and gas exploitation not only consumes substantial amounts of freshwater but also generates large quantities of hazardous wastewater. Tremendous research efforts have been invested in developing membrane-based technologies for the treatment of shale oil and gas wastewater. Despite their success at the laboratory scale, membrane processes have not been implemented at full scale in the oil and gas fields. In this article, we analyze the growing demands of wastewater treatment in shale oil and gas production, and then critically review the current stage of membrane technologies applied to the treatment of shale oil and gas wastewater. We focus on the unique niche of those technologies due to their advantages and limitations, and use mechanical vapor compression as the benchmark for comparison. We also highlight the importance of pretreatment as a key component of integrated treatment trains, in order to improve the performance of downstream membrane processes and water product quality. We emphasize the lack of sufficient efforts to scale up existing membrane technologies, and suggest that a stronger collaboration between academia and industry is of paramount importance to translate membrane technologies developed in the laboratory to the practical applications by the shale oil and gas industry.  相似文献   

6.
• Swimming pool water was studied for DBPs upon exposure to additional stimulants. • DBP formation could be induced by residual chlorine and extended incubation. • Urine led to a massive formation of chloroform with additional stimulants. • Reactions between chlorine and anthropogenic organics were slow and long-lasting. • Urine control and air ventilation should be on the priority list for pool management. Anthropogenic organics are known to be responsible for the formation of harmful disinfection by-products (DBPs) in swimming pool water (SPW). The research explored an important scenario of SPW with no additional anthropogenic organic input. With stimulations by residual chlorine or additional chlorine and extended incubation, the formation of DBPs, especially chloroform, was significantly induced. Similar observations were found by investigating synthetic SPW made with sweat and urine. The presence of urine led to a massive formation of chloroform, as noted by an approximate 19-fold increase after 165-day incubation with a shock chlorine dose. The research suggests that consistent residual chlorine and long water retention as two typical features of SPW could unlock the DBP formation potential of anthropogenic organics. Thus, limiting the introduction of anthropogenic organics may not have an immediate effect on reducing DBP levels, because their reactions with chlorine can be slow and long-lasting. Pool management should prioritize on control of urine and improving air ventilation. This work is useful to deepen understandings about DBP formation in SPW and provide implications for pool management and prospective legislation.  相似文献   

7.
• Complete CT degradation was achieved by employing HA to CP/Fe(II)/FA process. • Quantitative detection of Fe(II) regeneration and HO• production was investigated. • Benzoic acid outcompeted FA for the reaction with HO•. • CO2 was the dominant reductive radical for CT removal. • Effects of solution matrix on CT removal were conducted. Hydroxyl radicals (HO•) show low reactivity with perchlorinated hydrocarbons, such as carbon tetrachloride (CT), in conventional Fenton reactions, therefore, the generation of reductive radicals has attracted increasing attention. This study investigated the enhancement of CT degradation by the synergistic effects of hydroxylamine (HA) and formic acid (FA) (initial [CT] = 0.13 mmol/L) in a Fe(II) activated calcium peroxide (CP) Fenton process. CT degradation increased from 56.6% to 99.9% with the addition of 0.78 mmol/L HA to the CP/Fe(II)/FA/CT process in a molar ratio of 12/6/12/1. The results also showed that the presence of HA enhanced the regeneration of Fe(II) from Fe(III), and the production of HO• increased one-fold when employing benzoic acid as the HO• probe. Additionally, FA slightly improves the production of HO•. A study of the mechanism confirmed that the carbon dioxide radical (CO2), a strong reductant generated by the reaction between FA and HO•, was the dominant radical responsible for CT degradation. Almost complete CT dechlorination was achieved in the process. The presence of humic acid and chloride ion slightly decreased CT removal, while high doses of bicarbonate and high pH inhibited CT degradation. This study helps us to better understand the synergistic roles of FA and HA for HO• and CO2 generation and the removal of perchlorinated hydrocarbons in modified Fenton systems.  相似文献   

8.
• Comammox bacteria have unique physiological characteristics. • Comammox bacteria are widely distributed in natural and artificial systems. • Comammox bacteria have the potential to reduce N2O emissions. • Coupling comammox bacteria with DEAMOX can be promoted in wastewater treatment. • Comammox bacteria have significant potential for enhancing total nitrogen removal. Complete ammonia oxidizing bacteria, or comammox bacteria (CAOB), can oxidize ammonium to nitrate on its own. Its discovery revolutionized our understanding of biological nitrification, and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle. Its wide distribution, adaptation to oligotrophic medium, and diverse metabolic pathways, means extensive research on CAOB and its application in water treatment can be promoted. Furthermore, the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment. This paper provides an overview of the discovery and environmental distribution of CAOB, as well as the physiological characteristics of the microorganisms, such as nutrient medium, environmental factors, enzymes, and metabolism, focusing on future research and the application of CAOB in wastewater treatment. Further research should be carried out on the physiological characteristics of CAOB, to analyze its ecological niche and impact factors, and explore its application potential in wastewater treatment nitrogen cycle improvement.  相似文献   

9.
•Phages can be better indicators of enteric viruses than fecal indicator bacteria. •Multiple phages should be added to the microbial source tracking toolbox. •Engineered phage or phage cocktail can effectively target resistant bacteria. •In phage use, phage-mediated horizontal gene transfer cannot be ignored. •More schemes are needed to prevent phage concentration from decreasing. Wastewater is a breeding ground for many pathogens, which may pose a threat to human health through various water transmission pathways. Therefore, a simple and effective method is urgently required to monitor and treat wastewater. As bacterial viruses, bacteriophages (phages) are the most widely distributed and abundant organisms in the biosphere. Owing to their capacity to specifically infect bacterial hosts, they have recently been used as novel tools in water pollution control. The purpose of this review is to summarize and evaluate the roles of phages in monitoring pathogens, tracking pollution sources, treating pathogenic bacteria, infecting bloom-forming cyanobacteria, and controlling bulking sludge and biofilm pollution in wastewater treatment systems. We also discuss the limitations of phage usage in water pollution control, including phage-mediated horizontal gene transfer, the evolution of bacterial resistance, and phage concentration decrease. This review provides an integrated outlook on the use of phages in water pollution control.  相似文献   

10.
• N-Cl-DCAM, an emerging N-DBP in drinking water was investigated. • A new BAC has a better removal efficiency for N-Cl-DCAM precursors than an old BAC. • N-Cl-DCAM precursors are more of low molecular weight and non-polar. • Adsorption of GAC plays a major role in removal of N-Cl-DCAM precursors by an O3-BAC. N-chloro-2,2-dichloroacetamide (N-Cl-DCAM) is an emerging nitrogenous disinfection by-product (N-DBP) which can occur in drinking water. In this study, an analytical method based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) was developed to validate the concentration of N-Cl-DCAM, which was found to be 1.5 mg/L in the effluent of a waterworks receiving raw water from Taihu Lake, China. The changes of N-Cl-DCAM formation potential (N-Cl-DCAMFP) in the drinking water treatment process and the removal efficiency of its precursors in each unit were evaluated. Non-polar organics accounted for the majority of N-Cl-DCAM precursors, accounting for 70% of the N-Cl-DCAM FP. The effect of conventional water treatment processes on the removal of N-Cl-DCAM precursors was found to be unsatisfactory due to their poor performance in the removal of low molecular weight (MW) or non-polar organics. In the ozonation integrated with biological activated carbon (O3-BAC) process, the ozonation had little influence on the decrease of N-Cl-DCAM FP. The removal efficiency of precursors by a new BAC filter, in which the granular activated carbon (GAC) had only been used for four months was higher than that achieved by an old BAC filter in which the GAC had been used for two years. The different removal efficiencies of precursors were mainly due to the different adsorption capacities of GAC for individual precursors. Low MW or non-polar organics were predominantly removed by GAC, rather than biodegradation by microorganisms attached to GAC particles.  相似文献   

11.
• Distribution of ARGs in decentralized sewage facilities were investigated. • Bacitracin-ARGs were most predominant ARGs in rural wastewater. • ARGs were identified in bacterial and viral community. • ARGs of rpoB, drfE, gyrA and parC were both correlated with bacteria and phages. • More attention should be paid to the risk of spreading ARG by phages. The distribution of antibiotic resistance genes (ARGs) has been intensively studied in large-scale wastewater treatment plants and livestock sources. However, small-scale decentralized sewage treatment facilities must also be explored due to their possible direct exposure to residents. In this study, six wastewater treatment facilities in developed rural areas in eastern China were investigated to understand their risks of spreading ARGs. Using metagenomics and network analysis tools, ARGs and bacterial and viral communities were identified in the influent (INF) and effluent (EFF) samples. The dominant ARGs belonged to the bacitracin class, which are different from most of municipal wastewater treatment plants (WWTPs). The dominant hosts of ARGs are Acidovorax in bacterial communities and Prymnesiovirus in viral communities. Furthermore, a positive relationship was found between ARGs and phages. The ARGs significantly correlated with phages were all hosted by specific genera of bacteria, indicating that phages had contributed to the ARG’s proliferation in sewage treatment facilities. Paying significant concern on the possible enhanced risks caused by bacteria, viruses and their related ARGs in decentralized sewage treatment facilities is necessary.  相似文献   

12.
• RED performance and stack resistance were studied by EIS and LSV. • Interface resistance were discriminated from Ohmic resistance by EIS. • Impacts of spacer shadow effect and concentration polarization were analyzed. • Ionic short current reduced the power density for more cell pairs. • The results enabled to predict RED performance with different configurations. Reverse electrodialysis (RED) is an emerging membrane-based technology for the production of renewable energy from mixing waters with different salinities. Herein, the impact of the stack configuration on the Ohmic and non-Ohmic resistances as well as the performance of RED were systematically studied by using in situ electrochemical impedance spectroscopy (EIS). Three different parameters (membrane type, number of cell pairs and spacer design) were controlled. The Ohmic and non-Ohmic resistances were evaluated for RED stacks equipped with two types of commercial membranes (Type I and Type II) supplied by Fujifilm Manufacturing Europe B.V: Type I Fuji membranes displayed higher Ohmic and non-Ohmic resistances than Type II membranes, which was mainly attributed to the difference in fixed charge density. The output power of the stack was observed to decrease with the increasing number of cell pairs mainly due to the increase in ionic shortcut currents. With the reduction in spacer thickness from 750 to 200 µm, the permselectivity of membranes in the stack decreased from 0.86 to 0.79 whereas the energy efficiency losses increased from 31% to 49%. Overall, the output of the present study provides a basis for understanding the impact of stack design on internal losses during the scaling-up of RED.  相似文献   

13.
• The PNA, denitratation/anammox, and DAMO/anammox process are reviewed together. • Denitratation/anammox-based process is promising in mainstream treatment. • DAMO and denitratation processes realize the higher nitrogen removal efficiency. • The utilization of metabolism diversity of functional microbe is worth exploring. • An effective waste treatment system concept is proposed. Anammox technology has been widely researched over the past 40-year from the laboratory-scale to full-scale. It is well-known that in actual applications, the solo application of anammox is not feasible. Since both ammonium and nitrite are prerequisites based on the reaction mechanism, the pre-treatment of wastewater is necessary. With the combination of anammox process and other pre-treatment processes to treat the actual wastewater, many types of anammox-based processes have been developed with distinct nitrogen removal performance. Thus, in order to heighten the awareness of researchers to the developments and accelerate the application of these processes to the treatment of actual wastewater, the main anammox-based processes are reviewed in this paper. It includes the partial nitritation/anammox process, the denitratation/anammox (PD/A) process, the denitrifying anaerobic methane oxidation/anammox (DAMO/A) process, and more complex deuterogenic processes. These processes have made the breakthroughs in the application of the anammox technology, such as the combination of nitrification and PD/A process can achieve stability and reliability of nitrogen removal in the treatment of mainstream wastewater, the PD/A process and the DAMO/A have brought about further improvements in the total nitrogen removal efficiency of wastewater. The diversity of functional microbe characteristics under the specific condition indicate the wide application potential of anammox-based processes, and further exploration is necessary. A whole waste treatment system concept is proposed through the effective allocation of above mentioned processes, with the maximum recovery of energy and resources, and minimal environmental impact.  相似文献   

14.
• MEDCC combined with Fenton process was developed to treat real pesticide wastewater. • Pesticide removal was attributable to desalination in the MEDCC. • High COD removal was attributable to organic distributions in different chambers. The combination of the microbial electrolysis desalination and chemical-production cell (MEDCC) and Fenton process for the pesticide wastewater treatment was investigate in this study. Real wastewater with several toxic pesticides, 1633 mg/L COD, and 200 in chromaticity was used for the investigation. Results showed that desalination in the desalination chamber of MEDCC reached 78%. Organics with low molecular weights in the desalination chamber could be removed from the desalination chamber, resulting in 28% and 23% of the total COD in the acid-production and cathode chambers, respectively. The desalination in the desalination chamber and organic transfer contributed to removal of pesticides (e.g., triadimefon), which could not be removed with other methods, and of the organics with low molecular weights. The COD in the effluent of the MEDCC combined the Fenton process was much lower than that in the perixo-coagulaiton process (<150 vs. 555 mg/L). The combined method consumed much less energy and acid for the pH adjustment than that the Fenton.  相似文献   

15.
• Cellulose-based membrane separates oily wastewater mimicking the living things. • The three central surface mechanisms were reviewed. • Preparation, performance, and mechanism are critically evaluated. • First review of wettability based cellulose membrane as major material. • The current and future importance of the research are discussed. It is challenging to purify oily wastewater, which affects water-energy-food production. One promising method is membrane-based separation. This paper reviews the current research trend of applying cellulose as a membrane material that mimics one of three typical biostructures: superhydrophobic, underwater superoleophobic, and Janus surfaces. Nature has provided efficient and effective structures through the evolutionary process. This has inspired many researchers to create technologies that mimic nature’s structures or the fabrication process. Lotus leaves, fish scales, and Namib beetles are three representative structures with distinct functional and surface properties: superhydrophobic, underwater superoleophobic, and Janus surfaces. The characteristics of these structures have been widely studied and applied to membrane materials to improve their performance. One attractive membrane material is cellulose, which has been studied from the perspective of its biodegradability and sustainability. In this review, the principles, mechanisms, fabrication processes, and membrane performances are summarized and compared. The theory of wettability is also described to build a comprehensive understanding of the concept. Finally, future outlook is discussed to challenge the gap between laboratory and industrial applications.  相似文献   

16.
• A novel conductive carbon black modified lead dioxide electrode is synthesized. • The modified PbO2 electrode exhibits enhanced electrochemical performances. • BBD method could predict optimal experiment conditions accurately and reliably. • The modified electrode possesses outstanding reusability and safety. The secondary pollution caused by modification of an electrode due to doping of harmful materials has long been a big concern. In this study, an environmentally friendly material, conductive carbon black, was adopted for modification of lead dioxide electrode (PbO2). It was observed that the as-prepared conductive carbon black modified electrode (C-PbO2) exhibited an enhanced electrocatalytical performance and more stable structure than a pristine PbO2 electrode, and the removal efficiency of metronidazole (MNZ) and COD by a 1.0% C-PbO2 electrode at optimal conditions was increased by 24.66% and 7.01%, respectively. Results revealed that the electrochemical degradation of MNZ wastewater followed pseudo-first-order kinetics. This intimates that the presence of conductive carbon black could improve the current efficiency, promote the generation of hydroxyl radicals, and accelerate the removal of MNZ through oxidation. In addition, MNZ degradation pathways through a C-PbO2 electrode were proposed based on the identified intermediates. To promote the electrode to treat antibiotic wastewater, optimal experimental conditions were predicted through the Box-Behnken design (BBD) method. The results of this study suggest that a C-PbO2 electrode may represent a promising functional material to pretreat antibiotic wastewaters.  相似文献   

17.
• Real ML-GFW with high salinity and high organics was degraded by O3/H2O2 process. • Successful optimization of operation conditions was attained using RSM based on CCD. • Single-factor experiments in advance ensured optimal experimental conditions. • The satisfactory removal efficiency of TOC was achieved in spite of high salinity. • The initial pH plays the most significant role in the degradation of ML-GFW. The present study reports the use of the O3/H2O2 process in the pretreatment of the mother liquor of gas field wastewater (ML-GFW), obtained from the multi-effect distillation treatment of the gas field wastewater. The range of optimal operation conditions was obtained by single-factor experiments. Response surface methodology (RSM) based on the central composite design (CCD) was used for the optimization procedure. A regression model with Total organic carbon (TOC) removal efficiency as the response value was established (R2 = 0.9865). The three key factors were arranged according to their significance as: pH>H2O2 dosage>ozone flow rate. The model predicted that the best operation conditions could be obtained at a pH of 10.9, an ozone flow rate of 0.8 L/min, and H2O2 dosage of 6.2 mL. The dosing ratio of ozone was calculated to be 9.84 mg O3/mg TOC. The maximum removal efficiency predicted was 75.9%, while the measured value was 72.3%. The relative deviation was found to be in an acceptable range. The ozone utilization and free radical quenching experiments showed that the addition of H2O2 promoted the decomposition of ozone to produce hydroxyl radicals (·OH). This also improved the ozone utilization efficiency. Gas chromatography-mass spectrometry (GC-MS) analysis showed that most of the organic matters in ML-GFW were degraded, while some residuals needed further treatment. This study provided the data and the necessary technical supports for further research on the treatment of ML-GFW.  相似文献   

18.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   

19.
• Actual SAORs was determined using MLVSS and temperature. • Measured SAOR decreased with increasing MLVSS 1.1‒8.7 g/L. • Temperature coefficient (θ) decreased with increasing MLVSS. • Nitrification process was dynamically simulated based on laboratory-scale SBR tests. • A modified model was successfully validated in pilot-scale SBR systems. Measurement and predicted variations of ammonia oxidation rate (AOR) are critical for the optimization of biological nitrogen removal, however, it is difficult to predict accurate AOR based on current models. In this study, a modified model was developed to predict AOR based on laboratory-scale tests and verified through pilot-scale tests. In biological nitrogen removal reactors, the specific ammonia oxidation rate (SAOR) was affected by both mixed liquor volatile suspended solids (MLVSS) concentration and temperature. When MLVSS increased 1.6, 4.2, and 7.1-fold (1.3‒8.9 g/L, at 20°C), the measured SAOR decreased by 21%, 49%, and 56%, respectively. Thereby, the estimated SAOR was suggested to modify when MLVSS changed through a power equation fitting. In addition, temperature coefficient (θ) was modified based on MLVSS concentration. These results suggested that the prediction of variations ammonia oxidation rate in real wastewater treatment system could be more accurate when considering the effect of MLVSS variations on SAOR.  相似文献   

20.
• The sampling was conducted in city on the Yunnan-Guizhou Plateau for one year. • The groups of PAHs revealed their different environmental fates and migration paths. • Seasonal biomass burning could affect the concentration by long-distance transport. • Industrial sources and traffic emissions were the main contributor of PAHs. • Living in industrial areas or winter had higher health risk by exposure PAHs in PM2.5. Monthly particle-phase ambient samples collected at six sampling locations in Yuxi, a high-altitude city on the edge of Southeast Asia, were measured for particle-associated PAHs. As trace substances, polycyclic aromatic hydrocarbons (PAHs) are susceptible to the influences of meteorological conditions, emissions, and gas-particulate partitioning and it is challenging job to precise quantify the source and define the transmission path. The daily concentrations of total PM2.5-bound PAHs ranged from 0.65 to 80.76 ng/m3, with an annual mean of 11.94 ng/m3. Here, we found that the concentration of PM2.5-bound PAHs in winter was significantly higher than that in summer, which was mainly due to source and meteorology influence. The increase of fossil combustion and biomass burning in cold season became the main contributors of PAHs, while precipitation and low temperature exacerbated this difference. According to the concentration variation trend of PM2.5-bound PAHs and their relationship with meteorological conditions, a new grouping of PAHs is applied, which suggested that PAHs have different environmental fates and migration paths. A combination of source analysis and trajectory model supported local sources from combustion of fossil fuel and vehicle exhaust contributed to the major portion on PAHs in particle, but on the Indochina Peninsula the large number of pollutants emitted by biomass burning during the fire season would affect the composition of PAHs through long-range transporting. Risk assessment in spatial and temporal variability suggested that citizens living in industrial areas were higher health risk caused by exposure the PM2.5-bound PAHs than that in other regions, and the risk in winter was three times than in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号