首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Prescribed burning is commonly used to prevent accumulation of biomass in fire-prone shrubland in NW Spain. However, there is a lack of knowledge about the efficacy of the technique in reducing fire hazard in these ecosystems. Fire hazard in burned shrubland areas will depend on the initial capacity of woody vegetation to recover and on the fine ground fuels existing after fire. To explore the effect that time since burning has on fire hazard, experimental tests were performed with two fuel complexes (fine ground fuels and regenerated shrubs) resulting from previous prescribed burnings conducted in a gorse shrubland (Ulex europaeus L.) one, three and five years earlier. A point-ignition source was used in burning experiments to assess ignition and initial propagation success separately for each fuel complex. The effect of wind speed was also studied for shrub fuels, and several flammability parameters were measured. Results showed that both ignition and initial propagation success of fine ground fuels mainly depended on fuel depth and were independent of time since burning, although flammability parameters indicated higher fire hazard three years after burning. In contrast, time since burning increased ignition and initial propagation success of regenerated shrub fuels, as well as the flammability parameters assessed, but wind speed had no significant effect. The combination of results of fire hazard for fine ground fuels and regenerated shrubs according to the variation in relative coverage of each fuel type after prescribed burning enabled an assessment of integrated fire hazard in treated areas. The present results suggest that prescribed burning is a very effective technique to reduce fire hazard in the study area, but that fire hazard will be significantly increased by the third year after burning. These results are valuable for fire prevention and fuel management planning in gorse shrubland areas.  相似文献   

2.
Fire Management of California Shrubland Landscapes   总被引:2,自引:0,他引:2  
  相似文献   

3.
Geospatial information technology is changing the nature of fire mapping science and management. Geographic information systems (GIS) and global positioning system technology coupled with remotely sensed data provide powerful tools for mapping, assessing, and understanding the complex spatial phenomena of wildland fuels and fire hazard. The effectiveness of these technologies for fire management still depends on good baseline fuels data since techniques have yet to be developed to directly interrogate understory fuels with remotely sensed data. We couple field data collections with GIS, remote sensing, and hierarchical clustering to characterize and map the variability of wildland fuels within and across vegetation types. One hundred fifty six fuel plots were sampled in eight vegetation types ranging in elevation from 1150 to 2600 m surrounding a Madrean 'sky island' mountain range in the southwestern US. Fuel plots within individual vegetation types were divided into classes representing various stages of structural development with unique fuel load characteristics using a hierarchical clustering method. Two Landsat satellite images were then classified into vegetation/fuel classes using a hybrid unsupervised/supervised approach. A back-classification accuracy assessment, which uses the same pixels to test as used to train the classifier, produced an overall Kappa of 50% for the vegetation/fuels map. The map with fuel classes within vegetation type collapsed into single classes was verified with an independent dataset, yielding an overall Kappa of 80%.  相似文献   

4.
Fire behaviour under experimental conditions is described in nine Mediterranean gorse shrublands ranging from 3-12 years of age with different fuel loads. Significant differences in the fire-line intensity, fuel load and rate of fire spread have been found to be related to the stage of development of the communities. Fire spread is correlated with fuel moisture using multiple regression techniques. Differences in fuel moisture between mature and young communities under moderate weather conditions have been found. The lower moisture content identified in the mature shrubland is due both to the decreasing moisture content of senescent shrubland in some species, mainly in live fractions of Ulex parviflorus Pour. fuel, and to a substantial increase in dead fuel fractions with low percentages of moisture content. The result is that the older the shrubland is, the greater will be the decrease in the total moisture content of the vegetation. In these moderate weather conditions, the fire intensity of the mature community was as high as the maximum intensity recommended for prescribed fires. This fact seems to indicate that, even under moderate conditions, prescribed burning as an alternative management tool in the mature shrubland must always take into account fuel control; on the other hand, this technique could be applied more easily when the shrubland is at an intermediate growth stage (4-5 years of age). Therefore, more frequent low-intensity prescribed fires are indicated to abate the risk of catastrophic fire.  相似文献   

5.
Hobart's bushlands consist of eight distinct vegetation types ranging from open woodland to wet forest. Fine fuel accumulation characteristics are distinctive across this range of vegetation types and mostly seem to conform to the function Wt = Wss(1−ekt)+ l·92(ekt), although there is considerable scatter around the lines of best fit in many types.This information contributes to determining the applicability and appropriate frequency of controlled burning as a means of reducing fuels to protect life and property from wildfire. Regular burning of grassy vegetation should ensure relatively safe zones within the urban/bush matrix. It is likely that burning heathy forest types at frequencies that would ensure safe fuel loads would be ecologically detrimental. It would be difficult and futile to use fuel reduction burning in wet forest types as a means of protecting life and property. The fuel accumulation characteristics and the existing ecological knowledge of Allocasuarina verticillata shrubland suggests that fuel reduction burning would be counter-productive in this vegetation type.  相似文献   

6.
Fires in mountain big sagebrush [Artemisia tridentata spp. vaseyana (Rydb.) Beetle] plant communities historically shifted dominance from woody to herbaceous vegetation. However, fire return intervals have lengthened with European settlement, and sagebrush dominance has increased at the expense of herbaceous vegetation in some plant communities. Management actions may be needed to decrease sagebrush in dense sagebrush stands to increase herbaceous vegetation. Prescribed fire is often used to remove sagebrush; however, mechanical treatments, such as mowing, are increasingly used because they are more controllable and do not pose an inherent risk of escape compared with fire. However, information on the effects of burned and mowed treatments on herbaceous vegetation and whether fire and mowed applications elicit similar vegetation responses are limited. We evaluated the effects of prescribed burning and mowing for 3?years after treatment in mountain big sagebrush plant communities. The burned and mowed treatments generally increased herbaceous cover, density, and production compared with untreated controls (P??0.05). In contrast, annual forb (predominately natives) cover, density, and biomass increased with mowing and burning (P?相似文献   

7.
Schinus terebinthifolius, native to South America, has become an aggressive woody weed in southern Florida, displacing native vegetation as well as rapidly invading disturbed sites. Studies to evaluate the effectiveness of fire as a management option for controllingSchinus on abandoned farmland in Everglades National Park, known as the “Hole-in-the-Donut,” began in 1979. Study plots were established to monitor any change(s) in herbaceous cover and in numbers and size ofSchinus stems. Except in the control plot (which was not burned), each site was burned as often as fuel conditions permitted (usually once every one or two years), through 1985. Results indicated that both the number and density ofSchinus stems increased over the course of the study. While plots that burned showed a reduction in the rate ofSchinus invasion, invasion still progressed rapidly with or without the occurrence of fire. The increase inSchinus stem density from 1980 to 1985 was highly significant in all transects except one. Herbaceous cover showed no clear trends relative to burning.  相似文献   

8.
Fire is widely used in conservation management of native grasslands. Burning is often carried out under conditions that are marginal for sustained fire spread, and therefore it would be useful to be able to predict fire sustainability. There is currently no model allowing such prediction in temperate grasslands. This study aims to identify the environmental variables that determine whether fires will sustain in native grasslands in Tasmania, Australia, and develop a model for predicting fire sustainability in this vegetation. Fuel characteristics and weather conditions were recorded for 111 test fires. Logistic regression modeling identified dead fuel moisture content, fuel load, and percentage dead fuel as predictors of fire sustainability. Classification tree modeling identified dead fuel moisture and fuel load threshold values for sustaining fires. There was also evidence indicating a percentage dead fuel threshold. The logistic regression model and a model combining the results of the classification tree and the percentage dead fuel threshold accurately predicted the outcomes of a small set of experimental fires. These models are likely to have utility in predicting fire sustainability in Tasmanian grasslands and are also likely to be applicable to similar grasslands elsewhere.  相似文献   

9.
Recent advances in fire modeling permit quantitative estimations of fire behavior from quantitative inputs that describe the fuel array and conditions, such as weather and site data, under which it will burn. This paper describes the collection, analysis, and stratification of flammable forest fuels data for coniferous forest ecosystems in Montana and then illustrates the resource management application of these data in three areas: the development of the fire behavior model, a determination of the model's sensitivity to input errors as reflected by fire behavior prediction errors, and the development of a fire hazard simulator (TAROT). A new integrated stand simulator, GANDALF, is highlighted.Conclusions center on the need to integrate fire management into the land management planning decision-making process.This work was supported by a USDI National Park Service contract to Gradient Modeling, Inc., a nonprofit research foundation devoted to ecologic research and resource management applications, and by cooperative aid agreements between Gradient Modeling, Inc. and the USDA Forest Service, Intermountain Forest and Range Experiment Station, Northern Forest Fire Laboratory (Fire in Multiple Use Management, R, D, and A Program).  相似文献   

10.
The objective of this study was to examine postfire regeneration of tree, shrub, and dwarf shrub species, in relation to levels of damage in four planted pine forests (Pinus pinea, Pinus pinaster) in Andalusia. A prefire vegetation map was used for detailing species composition, vertical structure, and density and another for detailing the extent and intensity of fire damage. Between 3 and 7 years after the fires, an inventory was made of the vegetation in each area, using the step-point method. The information thus obtained was used to determine the amount of cover in the dwarf/shrub and tree layers, the frequency of species in each of the layers, floristic richness, and diversity (Shannon index). The botanical composition of the dwarf and shrub layer was analyzed using TWINSPAN. Variables were poorly correlated with level of fire damage, which suggests that the forests in this study followed the autosuccession model. Because of the artificial origin or seminatural condition, regeneration of the dominant tree species is poor, and it seems unlikely that forests will recover to their prefire state. Therefore action is recommended to restore these ecosystems.  相似文献   

11.
Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk (M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration—Corsican Agricultural and Rural Development Agency (ODARC)—for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.  相似文献   

12.
Biomass gasification is being considered as one of the most promising technologies for converting low-quality solid biomass fuel into gaseous fuel. Redberry juniper (Juniperus pinchotii), one of the woody species that dominate uncultivated lands in the southern great plains, USA, may have a great potential for bioenergy utilization. In this study, the results of gasification of juniper are presented. Juniper wood chips were gasified in an adiabatic fixed bed updraft gasifier using air and the mixture gas of carbon dioxide and oxygen (CO2:O2) as gasification medium. The effect of gasification parameters such as moisture contents, gasification mediums, and gasification temperature on produced gas properties and the tar yield were investigated. It was observed that oxy fuel gasification (the reaction of woody fuels with carbon dioxide) of juniper resulted in the increase of production of carbon monoxide, especially at higher peak gasification temperatures. As a result, the CO2 gasification resulted in producing higher heating value gas (6264 kJ/nm3 with dilution of CO2 and 19,750 kJ/nm3 inert free) compared to air gasification. For air gasification, it was observed that the updraft gasification produced large amount of the tar in the product gas (more than 100 g/nm3) for the fuels with moisture content between 6% and 11%. Generally, the tar yield increased with the increase of equivalence ratio (er) and moisture content. However, when the fuel moisture content reached 23.5%, the tar yield reduced significantly due low gasification temperature which reduced the less tar cracking.  相似文献   

13.
Shrub-Steppe Early Succession Following Juniper Cutting and Prescribed Fire   总被引:1,自引:0,他引:1  
Pinus-Juniperus L. (Piñon-juniper) woodlands of the western United States have expanded in area nearly 10-fold since the late 1800’s. Juniperus occidentalis ssp. occidentalis Hook. (western juniper) dominance in sagebrush steppe has several negative consequences, including reductions in herbaceous production and diversity, decreased wildlife habitat, and higher erosion and runoff potentials. Prescribed fire and mechanical tree removal are the main methods used to control J. occidentalis and restore sagebrush steppe. However, mature woodlands become difficult to prescribe burn because of the lack of understory fuels. We evaluated partial cutting of the woodlands (cutting 25–50% of the trees) to increase surface fuels, followed by prescribed fire treatments in late successional J. occidentalis woodlands of southwest Idaho to assess understory recovery. The study was conducted in two different plant associations and evaluated what percentage of the woodland required preparatory cutting to eliminate remaining J. occidentalis by prescribed fire, determined the impacts of fire to understory species, and examined early post-fire successional dynamics. The study demonstrated that late successional J. occidentalis woodlands can be burned after pre-cutting only a portion of the trees. Early succession in the cut-and-burn treatments were dominated by native annual and perennial forbs, in part due to high mortality of perennial bunchgrasses. By the third year after fire the number of establishing perennial grass seedlings indicated that both associations would achieve full herbaceous recovery. Cutting-prescribed fire combinations are an effective means for controlling encroaching late successional J. occidentalis and restoring herbaceous plant communities. However, land managers should recognize that there are potential problems associated with cutting-prescribed fire applications when invasive weeds are present.  相似文献   

14.
15.
Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system’s post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the “risk hotspots”, where post-fire management measures should be applied in priority.  相似文献   

16.
The purpose of this study was to provide the National Park Service with quantitative information regarding the effect of fire on fuel loads and pest species such asLonicera japonica, Ligustrum sinense, andRhus radicans.Three study areas of ten plots each were located in Chickamauga Battlefield Reservation of the Chickamauga and Chattanooga National Military Park. Fuel weights, aboveground biomass of honeysuckle, and counts of privet and poison ivy were collected both before and after prescribed fire. Additionally, one fourth of each of 14 plots was treated with glyphosate (tradename Roundup) to test for the use of fire as a herbicide pretreatment. This was a randomized block design with subsampling.Prescribed burning did significantly ( = 0.05) reduce fuel loads and the biomass of honeysuckle on burned plots. There was a statistically different response in fuel load reduction between fall and winter burns. Poison ivy significantly increased on burned plots, while privet counts did not vary significantly.Applications of glyphosate negatively impacted all three target species. Honeysuckle appeared to be damaged more readily on untreated plots, while no difference in response was noted on privet. Significantly more poison ivy growing points were killed by herbicide applications on burned plots than on unburned plots.  相似文献   

17.
Coastal sandplains provide habitat for a suite of rare and endangered plant and wildlife species in the northeastern United States. These early successional plant communities were maintained by natural and anthropogenic disturbances including salt spray, fire, and livestock grazing, but over the last 150 years, a decrease in anthropogenic disturbance frequency and intensity has resulted in a shift towards woody shrub dominance at the expense of herbaceous taxa. This study quantified the effects of more than a decade of dormant season disturbance-based vegetation management (mowing and prescribed fire) on coastal sandplain plant community composition on Nantucket Island, Massachusetts, USA. We used time-series plant cover data from two similar sites to evaluate the effectiveness of disturbance management for restoring herbaceous species cover and reducing woody shrub dominance. Our results indicate that applying management outside of the peak of the growing season has not been effective in maintaining or increasing the cover of herbaceous species. While management activities resulted in significant (P < 0.01) increases in herbaceous species immediately after treatment, woody species recolonized and dominated treated sites within 3-years post treatment at the expense of graminoids and forbs. These results highlight the difficulties associated with directing ecological succession using disturbance-based management to maintain rare, herbaceous species in coastal sandplain systems that were once a prevalent landscape component under historically chronic anthropogenic disturbance. Further experimentation with growing season disturbance-based management and different combinations of management techniques could provide insights into management alternatives for maintaining herbaceous conservation targets in coastal sandplains.  相似文献   

18.
Recurrent fire has played a dominant role in the ecology of southwestern ponderosa pine forests. To assess the benefits or losses of fire in these forests, a computer simulation model, called BURN, considers vegetation (mortality, regeneration, and production of herbaceous vegetation), wildlife (populations and habitats), and hydrology (streamflow and water quality). In the formulation of the model, graphical representations (time-trend response curves) of increases or losses (compared to an unburned control) after the occurrence of fire are converted to fixedterm annual ratios, and then annuities for the simulation components. Annuity values higher than 1.0 indicate benefits, while annuity values lower than 1.0 indicate losses. Studies in southwestern ponderosa pine forests utilized in the development of BURN are described briefly.  相似文献   

19.
Pine plantations are an alternative to marginal agriculture in many countries, and are often presented as an option that improves biodiversity. However, these plantations can have adverse environmental effects if improperly managed. To evaluate the effect of forest management practices on biodiversity, the diversity, species richness, dominance and frequency of understory woody plant species in different forests of the Basque Country (northern Spain) were compared. Plantations of exotic conifers (Pinus radiata [D.] Don) of different ages were compared with deciduous forests of Quercus robur L. and Fagus sylvatica L. The effects of different types and intensities of management were taken into account. The differences observed were mainly conditioned by the intensity of forestry management, although the response varied according to forest type and age. In unmanaged pine plantations, the diversity and species richness of the understory increased rapidly after planting (while dominance decreased), remained stable in the intermediate age range, and reached a maximum in plantations more than 25 years of age. Management practices resulted in decreased understory diversity and species richness, as well as greater dominance. This was more pronounced in younger than in older stands. Moderate management, however, favored a greater diversity of the understory in deciduous forests. The species composition of the plantations and deciduous forests were different, the latter having a wider range of characteristic species. Knowledge of how forestry practices influence biodiversity (in terms of diversity, richness, dominance, and species composition) may allow predictions to be made about the diversity achievable with different management systems.  相似文献   

20.
The wildland–urban interface (WUI) is the region where development meets and intermingles with wildlands. The WUI has an elevated fire risk due to the proximity of development and residents to wildlands with natural wildfire regimes. Existing methods of delineating WUI are typically applied over a large region, use proxies for risk, and do not consider site-specific fire hazard drivers. While these models are appropriate for federal and provincial risk management, municipal managers require models intended for smaller regions. The model developed here uses the Burn-P3 fire behavior model to model WUI from local fire susceptibility (FS) in two study communities. Forest fuel code (FFC) maps for the study communities were modified using remote sensing data to produce detailed forest edges, including ladder fuels, update data currency, and add buildings and roads. The modified FFC maps used in Burn-P3 produced bimodal FS distributions for each community. The WUI in these communities was delineated as areas within community bounds where FS was greater than or equal to ?1 SD from the mean FS value ( ${\text{WUI}} = {\text{FS}} \geqslant - 1 \, [\bar \chi - \sigma ]$ ), which fell in the trough of the bimodal distribution. The WUI so delineated conformed to the definition of WUI. This model extends WUI modeling for broader risk management initiatives for municipal management of risk, as it (a) considers site-specific drivers of fire behavior; (b) models risk, represented by WUI, specific to a community; and, (c) does not use proxies for risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号