首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fire behaviour under experimental conditions is described in nine Mediterranean gorse shrublands ranging from 3-12 years of age with different fuel loads. Significant differences in the fire-line intensity, fuel load and rate of fire spread have been found to be related to the stage of development of the communities. Fire spread is correlated with fuel moisture using multiple regression techniques. Differences in fuel moisture between mature and young communities under moderate weather conditions have been found. The lower moisture content identified in the mature shrubland is due both to the decreasing moisture content of senescent shrubland in some species, mainly in live fractions of Ulex parviflorus Pour. fuel, and to a substantial increase in dead fuel fractions with low percentages of moisture content. The result is that the older the shrubland is, the greater will be the decrease in the total moisture content of the vegetation. In these moderate weather conditions, the fire intensity of the mature community was as high as the maximum intensity recommended for prescribed fires. This fact seems to indicate that, even under moderate conditions, prescribed burning as an alternative management tool in the mature shrubland must always take into account fuel control; on the other hand, this technique could be applied more easily when the shrubland is at an intermediate growth stage (4-5 years of age). Therefore, more frequent low-intensity prescribed fires are indicated to abate the risk of catastrophic fire.  相似文献   

2.
Prescribed burning is commonly used to prevent accumulation of biomass in fire-prone shrubland in NW Spain. However, there is a lack of knowledge about the efficacy of the technique in reducing fire hazard in these ecosystems. Fire hazard in burned shrubland areas will depend on the initial capacity of woody vegetation to recover and on the fine ground fuels existing after fire. To explore the effect that time since burning has on fire hazard, experimental tests were performed with two fuel complexes (fine ground fuels and regenerated shrubs) resulting from previous prescribed burnings conducted in a gorse shrubland (Ulex europaeus L.) one, three and five years earlier. A point-ignition source was used in burning experiments to assess ignition and initial propagation success separately for each fuel complex. The effect of wind speed was also studied for shrub fuels, and several flammability parameters were measured. Results showed that both ignition and initial propagation success of fine ground fuels mainly depended on fuel depth and were independent of time since burning, although flammability parameters indicated higher fire hazard three years after burning. In contrast, time since burning increased ignition and initial propagation success of regenerated shrub fuels, as well as the flammability parameters assessed, but wind speed had no significant effect. The combination of results of fire hazard for fine ground fuels and regenerated shrubs according to the variation in relative coverage of each fuel type after prescribed burning enabled an assessment of integrated fire hazard in treated areas. The present results suggest that prescribed burning is a very effective technique to reduce fire hazard in the study area, but that fire hazard will be significantly increased by the third year after burning. These results are valuable for fire prevention and fuel management planning in gorse shrubland areas.  相似文献   

3.
Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.  相似文献   

4.
Wildland fire affects both public and private resources throughout the United States. A century of fire suppression has contributed to changing ecological conditions and accumulated fuel loads. Managers have used a variety of approaches to address these conditions and reduce the likelihood of wildland fires that may result in adverse ecological impacts and threaten communities. Public acceptance is a critical component of developing and implementing successful management programs. This study examines the factors that influence citizen support for agency fuel reduction treatments over time—particularly prescribed fire and mechanical vegetation removal. This paper presents findings from a longitudinal study examining resident beliefs and attitudes regarding fire management and fuels treatments in seven states: Arizona, Colorado, Oregon, Utah, Michigan, Minnesota, and Wisconsin. The study was implemented in two phases over a 6-year period using mail surveys to residents of communities adjacent to federal lands in each location. Questions replicated measures from the original project as well as some new items to allow a more in-depth analysis of key concepts. The study design enables comparisons over time as well as between locations. We also assess the factors that influence acceptance of both prescribed fire and mechanical vegetation removal. Findings demonstrate a relative stability of attitudes toward fuels management approaches over time and suggest that this acceptance is strongly influenced by confidence in resource managers and beliefs that the treatments would result in positive outcomes.  相似文献   

5.
The ignition of low-intensity fires in the dormant season in the pine stands of north-western Portugal seeks to reduce the existing fuel hazard without compromising site quality. The purpose of this study is to characterise this practice and assess its effectiveness, based on information resulting from the normal monitoring process at the management level, and using operational guidelines, fire behaviour models and a newly developed method to classify prescribed fire severity. Although the region's humid climate strongly constrains the activity of prescribed fire, 87% of the fires analysed were undertaken under acceptable meteorological and fuel moisture conditions. In fact, most operations achieved satisfactory results. On average, prescribed fire reduces by 96% the potential intensity of a wildfire occurring under extreme weather conditions, but 36% of the treated sites would still require heavy fire fighting resources to suppress such fire, and 17% would still carry it in the tree canopy. Only 10% of the prescribed burns have an excessive impact on trees or the forest floor, while 89% (normal fire weather) or 59% (extreme fire weather) comply with both ecological integrity maintenance and wildfire protection needs. Improved planning and monitoring procedures are recommended in order to overcome the current deficiencies.  相似文献   

6.
A Review of the Main Driving Factors of Forest Fire Ignition Over Europe   总被引:2,自引:0,他引:2  
Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.  相似文献   

7.
Fire Management of California Shrubland Landscapes   总被引:2,自引:0,他引:2  
  相似文献   

8.
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100–1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.  相似文献   

9.
Anthropogenic fires in Africa are an ancient form of environmental disturbance, which probably have shaped the savanna vegetation more than any other human induced disturbance. Despite anthropogenic fires having played a significant role in savanna management by herders, previous ecological research did not incorporate the traditional knowledge of anthropogenic fire history. This paper integrates ecological data and anthropogenic fire history, as reconstructed by herders, to assess landscape and regional level vegetation change in northeastern Namibia. We investigated effects of fire frequency (i.e. <5, 5-10 and >10 years) to understand changes in vegetation cover, life form species richness and savanna conditions (defined as a ratio of shrub cover to herbaceous cover). Additionally, we analysed trends in the vegetation variables between different fire histories at the landscape and regional scales. Shrub cover was negatively correlated to herbaceous cover and herbaceous species richness. The findings showed that bush cover homogenisation at landscape and regional scales may suggest that the problem of bush encroachment was widespread. Frequent fires reduced shrub cover temporarily and promoted herbaceous cover. The effects on tree cover were less dramatic. The response to fire history was scale-independent for shrub, herbaceous and tree cover, but scale-dependent for the richness of grass and tree life forms. Fire history, and not grazing pressure, improved savanna conditions. The findings emphasise the need to assess effects of anthropogenic fires on vegetation change before introducing new fire management policies in savanna ecosystems of northeastern Namibia.  相似文献   

10.
Fire is widely used in conservation management of native grasslands. Burning is often carried out under conditions that are marginal for sustained fire spread, and therefore it would be useful to be able to predict fire sustainability. There is currently no model allowing such prediction in temperate grasslands. This study aims to identify the environmental variables that determine whether fires will sustain in native grasslands in Tasmania, Australia, and develop a model for predicting fire sustainability in this vegetation. Fuel characteristics and weather conditions were recorded for 111 test fires. Logistic regression modeling identified dead fuel moisture content, fuel load, and percentage dead fuel as predictors of fire sustainability. Classification tree modeling identified dead fuel moisture and fuel load threshold values for sustaining fires. There was also evidence indicating a percentage dead fuel threshold. The logistic regression model and a model combining the results of the classification tree and the percentage dead fuel threshold accurately predicted the outcomes of a small set of experimental fires. These models are likely to have utility in predicting fire sustainability in Tasmanian grasslands and are also likely to be applicable to similar grasslands elsewhere.  相似文献   

11.
12.
The formulation and implementation of new fire policies in the national forests depend upon public acceptance. A national survey of organized groups of forest users indicates that, contrary to the concern of many forest managers, considerable support exists for flexible fire suppression policies. Forest users are also willing to accept the risk associated with the manager's use of prescribed fire. However, important intergroup differences do exist. Such variation is discussed in relation to a number of socioeconomic variables, general fire knowledge, specific knowledge about the effects of low-intensity fires, and risk preference levels.  相似文献   

13.
An ecological data base for the San Jacinto Mountains, California, USA, was used to construct a probability model of wildland fire occurrence. The model incorporates both environmental and human factors, including vegetation, temperature, precipitation, human structures, and transportation. Spatial autocorrelation was examined for both fire activity and vegetation to determine the specification of neighborhood effects in the model. Parameters were estimated using stepwise logistic regressions. Among the explanatory variables, the variable that represents the neighborhood effects of spatial processes is shown to be of great importance in the distribution of wildland fires. An important implication of this result is that the management of wildland fires must take into consideration neighborhood effects in addition to environmental and human factors. The distribution of fire occurrence probability is more accurately mapped when the model incorporates the spatial term of neighborhood effects. The map of fire occurrence probability is useful for designing large-scale management strategies of wildfire prevention.  相似文献   

14.
15.
Every year, more than 50,000 wildland fires affect about 500,000 ha of vegetation in southern European countries, particularly in wildland-urban interfaces (WUI). This paper presents a method to characterize and map WUIs at large scales and over large areas for wildland fire prevention in the South of France. Based on the combination of four types of building configuration and three classes of vegetation structure, 12 interface types were classified. Through spatial analysis, fire ignition density and burned area ratio were linked with the different types of WUI. Among WUI types, isolated WUIs with the lowest housing density represent the highest level of fire risk.  相似文献   

16.
Recurrent fire has played a dominant role in the ecology of southwestern ponderosa pine forests. To assess the benefits or losses of fire in these forests, a computer simulation model, called BURN, considers vegetation (mortality, regeneration, and production of herbaceous vegetation), wildlife (populations and habitats), and hydrology (streamflow and water quality). In the formulation of the model, graphical representations (time-trend response curves) of increases or losses (compared to an unburned control) after the occurrence of fire are converted to fixedterm annual ratios, and then annuities for the simulation components. Annuity values higher than 1.0 indicate benefits, while annuity values lower than 1.0 indicate losses. Studies in southwestern ponderosa pine forests utilized in the development of BURN are described briefly.  相似文献   

17.
Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method for restoring fire in shortgrass prairie ecosystems where fire has been excluded for a prolonged time period.  相似文献   

18.
Vegetation fires may alter the quantity and quality of organic matter inputs to soil, rates of organic matter decay, and environmental factors that influence those processes. However, few studies have evaluated the impacts of this land management technique on soil organic carbon (SOC) and total N in grasslands and savannas. We evaluated the impact of repeated fires and their season of occurrence on SOC and total N storage in a temperate mixed-grass-mesquite savanna where fire is used to control woody plant encroachment. Four fire treatments varying in season of occurrence were examined: summer only (SF), winter only (WF), alternate summer and winter fires (SWF), and unburned controls. In each treatment, soils were sampled to 1 m under three vegetation types: C3 grasses, C4 grasses, and mesquite trees. The SOC storage at 0 to 20 cm was significantly greater in SF (2693 g C m(-2)) and SWF (2708 g C m(-2)) compared to WF (2446 g C m(-2)) and controls (2445 g C m(-2)). The SWF treatment also increased soil total N (271 g N m(-2)) relative to all other treatments (228-244 g N m(-2)) at 0 to 20 cm. Fire had no effect on SOC or total N at depths of > 20 cm. Vegetation type had no significant influence on SOC or total N stocks. The delta13C value of SOC was not affected by fire, but increased from -21 per thousand at 0 to 10 cm to -15 per thousand at depths of > 20 cm indicating that all treatments were once dominated by C4 grasses before woody plant encroachment during the past century. These results have implications for scientists, land managers, and policymakers who are now evaluating the potential for land uses to alter ecosystem C storage and influence atmospheric CO2 concentrations and global climate.  相似文献   

19.
Semi-structured focus group interviews were employed to examine factors that affect the likelihood that resource managers in southern Africa will use information on vegetation fires provided by two satellite-derived products: an active fire product and a burned area product. The two products are updated regularly and aim to deliver the state-of-the-art in the global monitoring of fires from satellite remote-sensing. Both products are derived from data transmitted by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors carried onboard NASA's Aqua and Terra satellites. The active fire product can be accessed for free via the internet and on media by users working anywhere in the world; the burned area product will be accessible in a similar manner in 2006. The MODIS fire products provide systematic, near-global coverage and are freely available; as such, they give resource managers new opportunities to obtain or supplement information they need to manage vegetation fires effectively. However, the availability of these products does not mean that resource managers will use them, and many other factors are involved. To understand factors that affect whether southern African resource managers will use the two products, two focus groups were held with members of the Southern African Fire Network (SAFNet) in Malawi, Africa, August 2004. Analysis of the group discussions reveals a number of factors that influence whether they will use the products. The qualitative, in depth nature of the group discussions revealed 12 main factors that influence product use; not least the low international internet bandwidths for African countries outside of South Africa. Analysis of the group discussions also suggests how the uptake of MODIS fire products by resource managers in southern Africa might be enhanced by affecting specific changes to how MODIS products are packaged and delivered.  相似文献   

20.
Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model’s predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model’s predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model’s performance is satisfactory when applied to the three selected vegetation types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号