首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
基于浓度守恒原理建立了一次回风空调系统室内PM_(2.5)浓度模型,研究了过滤器分别安装在新风段、回风段和送风段时过滤效率和新风量的变化对室内PM_(2.5)浓度的影响。模拟结果表明:在室外PM_(2.5)浓度大于室内初始值的条件下,过滤器安装在送风段或回风段时,减少新风有利于室内PM_(2.5)污染控制,过滤器安装在新风段时,根据过滤器效率调节新风,过滤效率小于临界效率,减小新风有利于室内污染控制;在室外PM_(2.5)浓度小于室内初始值的条件下,过滤器安装在送风段或新风段时,增加新风有利于室内PM_(2.5)污染控制,过滤器安装在回风段时,也存在临界效率,过滤效率小于临界值,增加新风有利于室内PM_(2.5)污染控制。  相似文献   

2.
细颗粒物(PM_(2.5))随空调新风进入室内,和室内产生的PM_(2.5)粒子一起作用,导致人体暴露在室内细颗粒物环境中。为保证室内空气品质,最大限度节约空调系统运行能耗,建立了室内PM_(2.5)浓度与CO_2体积分数双组分模型,提出了适用于某会议室不同室内外PM_(2.5)源、不同人数以及不同天气状况下的最佳通风策略,利用Simulink对炎热天气室内有无PM_(2.5)散发源、温和天气室内有无PM_(2.5)散发源4种工况下的不同通风方式进行仿真对比。模拟结果表明:炎热天气存在最小新风量,该值由室内人数决定,过滤送风对控制室内PM_(2.5)浓度效果最好;温和天气存在最大新风量,且该值与过滤器效率成正比;在所研究的情况下,温和天气节能潜力比炎热天气大。  相似文献   

3.
以燃烟为室内污染源,对不同污染程度下室内PM_(2.5)浓度进行动态监测,得到PM_(2.5)的沉降规律。研究发现,污染源对室内PM_(2.5)浓度及沉降时间有显著影响,随着燃烟量的增加,室内PM_(2.5)浓度相应升高,恢复到PM_(2.5)初始值所需的沉降时间越长。在质量平衡模型的基础上,建立了封闭条件下室内颗粒物的沉降模型。经验证,PM_(2.5)沉降曲线的变化规律与颗粒物沉降模型一致,说明构建的沉降模型合理可靠。最后,给出了自然通风对控制室内PM_(2.5)污染的效果,为室内PM_(2.5)污染控制提供参考。  相似文献   

4.
针对空调系统末端装置用风机盘管不具备过滤PM_(2.5)功能的问题,在风机盘管回风口加装具有低阻特性的驻极体空气过滤器进行了性能测试分析。以蜡烛燃烧产生的颗粒物作为室内PM_(2.5)的尘源,将3种不同过滤面积的驻极体空气过滤器分别安装在风机盘管回风口,测试了风机盘管在不同风量(额定风量、75%额定风量、50%额定风量)下运行时其对PM_(2.5)过滤性能及在30 min内室内PM_(2.5)浓度衰减率。结果表明:加装驻极体空气过滤器后风机盘管瞬时过滤效率可达到66%以上、在30 min内室内PM_(2.5)的浓度衰减率可以达到54.8%以上;在相同风量下风机盘管的瞬时过滤效率、处理风量随加装过滤器过滤面积增加而提高;以PM_(2.5)浓度衰减率作为指标,可以判断出回风口加装过滤面积为1.88 m2的过滤器净化效果最优,其在不同风量下30 min内PM_(2.5)浓度衰减率分别为87.4%、84.7%和77.3%,且在不同风量下工作时均能在30min内使室内PM_(2.5)浓度达到环境空气质量标准一级日平均浓度限值。  相似文献   

5.
为探明空调房间气流形式与通风量对室内微生物气溶胶的影响规律,在一个标准气流实验室,使用Andersen六级撞击式空气采样器对空气中的细菌与真菌气溶胶进行采样,分析了其浓度变化特点,及其与大气细颗粒物PM_(2.5)的相关关系。结果表明,晴朗天气下,气流室内不同气流形式和通风量对微生物气溶胶浓度的影响不同。总体来说,不管是哪种气流形式,通风量的增加均在一定范围内降低了室内微生物气溶胶及大气细颗粒物浓度,其中细菌气溶胶和PM_(2.5)在通风方式为侧面送风侧面排风时的去除效果最好,且分别在换气次数为3次/h和4次/h时其浓度达到最低,其去除效率分别为88.5%和42%,而真菌气溶胶在侧面送风顶面排风时的去除效果最好,在4次/h浓度最低,去除效率为6%。研究结果可以为探究室内环境空气质量及控制室内微生物污染提供基础数据。  相似文献   

6.
为研究严寒地区供暖季室内外PM_(2.5)浓度的垂直分布,在供暖季分别对长春某高层居住建筑1、8、15、24、33楼层的室内外PM_(2.5)浓度进行监测,研究不同楼层室内外PM_(2.5)的浓度与变化特征。采用随机组分重叠模型(RCS)方法研究各楼层PM_(2.5)渗透因子,采用逐步回归分析方法研究室内PM_(2.5)浓度的各影响因素。结果表明:在供暖季,长春市高层建筑的不同楼层均存在一定的PM_(2.5)污染,室内外PM_(2.5)浓度随楼层升高大体呈现减小的趋势,但差异不显著。室内外PM_(2.5)浓度存在显著的相关性(P 0.05),在没有室内污染源时,室外颗粒物渗透是室内污染的主要来源。室内PM_(2.5)浓度与房间面积等没有显著相关性。  相似文献   

7.
室内空气污染对人类健康的影响日益受到关注,目前空气净化系统作为室内空气污染最有效的控制方式,逐渐受到人们的青睐。针对市场上常见的空气净化器和新风净化机这2种空气净化系统,为探究2种系统净化方式的异同,分别构建了内循环、外循环净化理论模型,实际实验验证模型具有正确性。应用模型对影响两系统净化效果的因素进行分析,结果表明,相同条件下,空气净化器对PM_(2.5)去除效率高于新风净化机,且均随着风量、一次通过净化效率、时间的增大而升高,随着房间体积的增大而降低,新风净化机存在最佳建筑物换气次数。室外PM_(2.5)浓度不影响2种空气净化系统对PM_(2.5)的去除率,但随着室外浓度增大,室内PM_(2.5)剩余浓度升高。  相似文献   

8.
于2014年夏季,通过观测海淀公园不同区域沿道路不同宽度处PM_(2.5)浓度,研究PM_(2.5)浓度日变化规律、水平梯度分布规律、净化效益及其影响因素。结果表明,海淀公园内PM_(2.5)浓度日变化规律呈白天低晚上高的趋势,09:00—15:00时PM_(2.5)浓度达到国家标准Ⅱ类功能区浓度质量要求,05:00时PM_(2.5)浓度最高。不同观测区域一定宽度范围内出现PM_(2.5)浓度积聚,之后开始下降。总体上,海淀公园在13:00时对PM_(2.5)浓度净化效益最显著,09:00时净化效益最差。环城高速路区域与城市主干道区域165 m以上宽度处、城市次干道区域60 m以上宽度处为正净化效益,并维持正净化效益。海淀公园内PM_(2.5)浓度与气象因子之间相关关系表明,PM_(2.5)浓度与平均温度、相对湿度呈显著相关,与其他气象因素没有显著相关性。  相似文献   

9.
为掌握室内外细颗粒物(PM_(2.5))污染特性,监测采集西安市某办公场所室内外PM_(2.5)样品,统计分析PM_(2.5)质量浓度特征,探究室内外PM_(2.5)相关性、微观形貌以及矿物组成的差异。结果表明:室内外PM_(2.5)年均质量浓度分别为85.32和109.83μg·m~(-3),冬季污染尤为严重。室内PM_(2.5)受室外PM_(2.5)影响显著,室内外PM_(2.5)质量浓度的相关系数为0.890 0。室内PM_(2.5)多为粒径小于1μm的球状颗粒物,而室外颗粒物形状、大小不规则,室内外PM_(2.5)均含有大量的碳、氧元素,其他元素的种类和含量存在一定差异。室内PM_(2.5)中矿物多为非晶态物质,室外PM_(2.5)主要由石英、赤铁矿和碳酸钙等矿物质组成。  相似文献   

10.
采用稀释通道采样系统对北京市部分污染源排放的PM_(2.5)进行了采集,用气相色谱-质谱-质谱法分析了PM_(2.5)中24种多环芳烃(PAHs)的浓度,获得典型排放源PM_(2.5)中PAHs成分谱。结果表明,不同种类污染源排放的PAHs的组分浓度差异比较大,形成的百分浓度轮廓图有各自的特征。生物质燃烧和化石燃烧排放的PM_(2.5)中PAHs含量高于其他污染源;燃煤电厂和供暖/工业锅炉排放的PM_(2.5)中低环数的PAHs比例较高,而生物质燃烧和餐饮源则是高环数的污染物比例较高。燃烧温度高,燃烧较充分,采用布袋除尘方式的污染源排放的PAHs含量要低于其他污染源。  相似文献   

11.
为研究杭州市大气PM_(2.5)的污染特征,评估本地污染源和外来污染源对PM_(2.5)的影响,于2013年10月10日至11月2日对杭州市主城区两个不同高度的采样点进行采样,并定量分析大气PM_(2.5)中的化学成分。结果表明,采样期间20、84m高度的大气PM_(2.5)日均质量浓度分别为(80.5±28.9)、(80.3±29.3)μg/m3,不同高度的PM_(2.5)浓度及其化学成分无明显差异;PM_(2.5)主要成分质量分数按如下排序:SO_4~(2-)有机碳(OC)NO_3~-NH_4~+元素碳(EC);大气PM_(2.5)中二次粒子SO_4~(2-)、NO_3~-、NH_4~+平均质量浓度总和约为39.0μg/m3,二次转化是杭州市大气PM_(2.5)的主要来源,SO_4~(2-)、NO_3~-、NH_4~+贡献率为48%左右;20、84 m高度的大气PM_(2.5)中OC分别为(15.6±5.1)、(14.8±4.7)μg/m3,EC分别为(4.6±1.8)、(4.6±1.6)μg/m3,OC/EC(质量比)约为3.3。采样期间,杭州市大气PM_(2.5)在近地面垂直方向上分布较为均匀,表明杭州市大气PM_(2.5)受外来污染源的影响较小。而在本地污染源中,杭州市大气PM_(2.5)主要受到生物质燃烧、机动车尾气、燃煤和餐饮油烟等来源的影响,地面扬尘的作用不明显。  相似文献   

12.
基于2014—2016年广州PM_(2.5)浓度逐时观测数据,研究了广州PM_(2.5)污染变化特征及其与气象因子的关系,确定了影响广州大气能见度的PM_(2.5)浓度阈值。结果表明:(1)2014—2016年广州PM_(2.5)质量浓度平均为32.7μg/m3,广州1月PM_(2.5)污染最重,轻度、中度、重度污染频率合计达20.16%;(2)PM_(2.5)浓度与风速、降水、气温、能见度呈负相关,与相对湿度、气压呈正相关;(3)广州地区在南风的条件下PM_(2.5)浓度最低,风速小于2m/s的偏北风下易出现污染;(4)PM_(2.5)浓度与相对湿度共同影响广州能见度的变化,随着相对湿度的增加,PM_(2.5)浓度的敏感阈值不断减小,通常当PM_(2.5)高于37.3μg/m3时,控制PM_(2.5)对改善城市能见度成效相对缓慢,而当PM_(2.5)浓度低于此阈值时,降低PM_(2.5)将显著提高大气能见度。  相似文献   

13.
为探讨济南市大气PM_(2.5)主要化学组分和污染特征,2017年在济南市开展了PM_(2.5)样品采集工作,分析了PM_(2.5)中有机碳(OC)、元素碳(EC)和水溶性离子浓度水平。结果表明:采样期间济南市PM_(2.5)中OC、EC年均质量浓度分别为9.10、2.68μg/m~3,全年OC与EC质量浓度的比值为3.4,二次有机碳污染严重;OC、EC季节分布特征明显,均为冬季浓度最高,且秋、冬季两者相关系数较高,表明秋季和冬季OC、EC来源较为一致。NO_3~-、SO_4~(2-)、NH_4~+年均质量浓度之和为34.29μg/m~3,占水溶性离子总量的88.9%,是济南市PM_(2.5)中最重要的组分;各水溶性离子浓度具有明显的季节变化特征,NO_3~-、SO_4~(2-)、NH_4~+、Cl~-和K~+均冬季浓度最高,而Ca~(2+)春季浓度最高;PM_(2.5)中NO_3~-与SO_4~(2-)质量浓度的比值为1.10,说明相比于固定污染源,移动污染源对济南市PM_(2.5)影响更大。  相似文献   

14.
从南昌市环境监测站获取大气中主要污染物浓度,降雨量由APS-3A型降雨降尘自动采样器实际监测得到,分析了南昌市新城区2014年夏季降雨对大气污染物浓度的影响。结果表明:(1)中强降雨(日降雨量≥10 mm)对大气中的SO_2、PM_(10)和PM_(2.5)都有明显的清除效果,对SO_2、PM_(10)和PM_(2.5)的清除效率分别为14.3%~50.0%、20.2%~68.8%、20.0%~74.0%;1~10mm的降雨对SO_2、PM_(10)和PM_(2.5)也有一定的清除效果;≤1mm的降雨,对PM_(10)具有清除作用,但清除效率较低(2.3%~23.2%),而对SO_2和PM_(2.5)清除效果不明显。降雨量对NO_2的浓度变化影响不大。(2)降雨对大气污染物的清除效率受降雨前污染物本底浓度的影响,污染物本底浓度很低时甚至会出现反弹现象。(3)降雨对污染物的清除效率除了受降雨量的影响外,其降雨场数和降雨累积时间对其也有一定的影响。  相似文献   

15.
以地埋式污水处理厂的通风排污系统为研究对象,污水处理时产生的恶臭气体严重影响室内外环境,通风系统中排风与送风风量的合理匹配对于改善厂区内部空气品质至关重要。以空气品质最差的脱水机房为例,对传统的无组织渗风以及竖直管侧向离子风下不同风量进行数值模拟,从速度场分布,氨气敏感浓度面积占比,工作区域平均空气龄,以及通风除臭效果进行仿真分析。结果表明,竖直管侧向送离子风比传统无组织渗风对改善脱水机房空气品质作用更显著,提高排风风量和新风比可以有效降低室内恶臭浓度和提高排污效率,并且提高新风比对提高排污效率的影响更为显著,给工作人员提供更好的风感和更新鲜的空气。  相似文献   

16.
通过建立颗粒物穿透率与渗透通风房间换气次数的数学模型以及室内颗粒物浓度集总参数模型,对常州市某住宅建筑室内颗粒物污染特征进行分析,通过实验验证了颗粒物穿透率、室内颗粒物浓度模型的准确性。计算结果表明,对于室内无污染源的渗透通风房间,粒径为0.5、1.0、2.5μm的颗粒物以及PM_(2.5)穿透率随换气次数的增大而增加;当换气次数从0.2次·h~(-1)增加至0.5次·h~(-1)时,PM_(2.5)穿透率由70%增大至88%,增加25.7%。对于用香烟烟雾作为颗粒污染物尘源的房间,空气净化器的实际洁净空气量CADR值为152 m~3·h~(-1),相比实验舱标定工况320 m~3·h~(-1)衰减52.5%。  相似文献   

17.
于2017年1—5月(取暖季)在西宁市区、郊区、农村设置采样点采集PM_(2.5)样品,利用离子色谱法测定PM_(2.5)中水溶性无机离子浓度。结果表明:取暖季西宁大气PM_(2.5)日均质量浓度为(55.98±52.66)μg/m~3,呈现明显的市区郊区农村的浓度变化特征。PM_(2.5)中水溶性离子质量浓度之和占PM_(2.5)质量浓度的36.3%,水溶性离子平均浓度大小为SO_4~(2-)NO_3~-NH_4~+Na~+Cl~-C_2O_4~(2-)Ca~(2+)F~-K~+Mg~(2+);取暖季西宁大气硫氧化率(SOR)和氮氧化率(NOR)平均值分别为0.21、0.13,表明SO_4~(2-)、NO_3~-主要由二次转化形成,PM_(2.5)中NO_3~-/SO_4~(2-)(质量浓度比)为0.75,阳离子与阴离子电荷摩尔数比值为0.89,表明燃煤是PM_(2.5)主要贡献源,颗粒物总体呈酸性。后向轨迹分析表明,重污染期间西宁PM_(2.5)及其中水溶性离子的浓度变化不仅受本地污染源的影响,也受外来气团输送的影响。  相似文献   

18.
为了解无风天情况下PM_(2.5)、PM_(10)的人体暴露水平及扩散机制,对人体呼吸高度的PM_(2.5)、PM_(10)浓度及近地面不同高度处的温度、相对湿度进行连续监测,分析了垂直温度梯度、相对湿度的相对变化速率对PM_(2.5)、PM_(10)浓度的影响,并利用回归分析法建立PM_(2.5)、PM_(10)浓度与不同高度处温度、相对湿度的单、多变量回归模型,从中选取最优回归模型。结果表明:(1)晴天的PM_(2.5)、PM_(10)浓度在研究时段(9:00—21:00)内总体呈先降低再升高的趋势,而阴天、小雨天PM_(2.5)、PM_(10)浓度呈多峰变化,起伏较大;晴天不同高度的温度差异大,阴天、小雨天温度差异相对较小;晴天不同高度的相对湿度曲线总体均呈U型分布,相较而言,阴天及小雨天各层的相对湿度曲线波动较大;(2)垂直温度梯度是影响晴天PM_(2.5)、PM_(10)扩散的主要原因,相对湿度变化是影响颗粒物扩散的另一重要因素。(3)PM_(2.5)、PM_(10)浓度的单、多变量最优回归模型表明,低污染晴天,温度是影响颗粒物扩散的主要因素,高污染晴天则主要受相对湿度的影响,介于上述两种污染状况之间时,PM_(2.5)、PM_(10)浓度不仅受各层相对湿度的控制,还受到温度的影响。阴天PM_(2.5)、PM_(10)浓度的最优回归模型相对复杂,模型精度不及晴天。  相似文献   

19.
采用基于气象预报(WRF)的多尺度空气质量(CMAQ)模型,通过研究不同大气污染物排放情景下PM_(2.5)平均浓度变化,分析SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs等大气污染物减排对武汉市PM_(2.5)的影响。结果表明,大气污染物减排对武汉市PM_(2.5)年均浓度影响十分显著,且随着污染控制力度加大,PM_(2.5)污染持续减轻;当SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放量均削减40%时,PM_(2.5)年均浓度下降24.0%,依然超出《环境空气质量标准》(GB 3095—2012)二级标准值。基于空间布局和行业敏感性确定武汉市大气污染控制方案,方案实施后SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放总量分别下降53%、26%、32%、36%和31%,PM_(2.5)年均浓度下降35%左右,控制效果更加明显。  相似文献   

20.
PM_(2.5)以其对环境空气质量及人类健康的巨大威胁而逐渐引起了专家学者的关注。以西南地区典型山地城市——重庆市主城区为研究区,利用多元线性回归方法和地理信息系统(GIS)技术,基于2013—2017年冬季(1、2、12月)原重庆市环境保护局发布的17个空气环境监测站点实测数据,同时考虑自然及社会经济因素,构建了基于多因素的多元回归模型,模拟了重庆市主城区2013—2017年冬季PM_(2.5)平均浓度的空间分布状况。结果表明:PM_(2.5)浓度受多因素的影响,其中缓冲半径1 500m内建设用地面积、1 000m内林地面积、2 500m内产业点密度、1 500m内道路长度及高程影响较大;通过多因素与PM_(2.5)浓度的相关性建立的回归模型,能有效模拟PM_(2.5)浓度的空间分布特点,重庆市主城区冬季PM_(2.5)平均浓度的空间分布呈现中西部高、北部和东南部较低的格局;2013—2017年冬季PM_(2.5)平均浓度有下降的趋势,2015年冬季下降幅度尤为明显。此研究结果对探讨PM_(2.5)浓度的空间分布特点有一定的应用价值,可为减轻空气PM_(2.5)污染及提高城市空气质量提供重要的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号