首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A series of formulations were prepared with different percentages of oligomer, epoxy diacrylate (EA-1020 ), monomer, 1,6 Hexane diol diacrylate,(HDDA) and different percentages of filler (Magnesium tri-silicate, Mg2Si3O8). Irgacure 369 [2-Benzyl-2-dimethyl-amine-1 (4-morpholinophenyl) butanone-1] was used in the formulations as photoinitiator. Ultraviolet (UV) cured thin polymer films were prepared from these formulating solutions on clean glass plates. Pendulum hardness (PH), gel content and macro scratch hardness (MSH) of the UV cured films were studied. One percent Mg2Si3O8 containing formulation showed the premium properties. The substrates (plain board) were coated by these formulating solutions and cured under the same UV lamp at different intensities of radiation. Various properties of the coated surface such as PH, gloss, adhesion, abrasion and MSH were investigated. The base coat containing 1% Mg2Si3O8 and top coat containing 48% HDDA produced the best performance among all the formulations inspected. The degradable properties in different weathering conditions on PH, gloss, adhesion, abrasion and MSH were measured. The surface cured with the optimized formulation (E) again yielded the minimum loss of the properties.  相似文献   

2.
Thin films of gelatin were prepared by casting. Then the films were photocured and the mechanical properties were studied. The tensile strength of UV cured gelatin films showed about 10% enhancement than that of raw gelatin films. Minor amount of urea (1–5%) was used as additive in aqueous gelatin solution and films were prepared using same technique. Four formulations were prepared in methanol with 2-ethylhexyl acrylate in the presence of photoinitiator (darocur-1664). The films were soaked in the prepared formulations and then cured under UV radiation at different intensities (5–25 passes). Percentage of urea, monomer concentration, soaking time and radiation intensities were optimized with the extent of polymer loading, TS and elongation at break of the photocured film. The films containing 2% urea, cured with 3% EHA for 3 min at 15th UV pass showed the highest mechanical properties. A significant improvement of TS (31%) occurred when EHA (3%) was incorporated.  相似文献   

3.
Chitosan films were prepared from dried prawn shell via chitin and then tensile properties like tensile strength (TS) and elongation at break (Eb) of the films were evaluated. Six formulations were developed using methyl methacylate (MMA) monomer and aliphatic urethane diacrylate oligomer (M-1200) in methanol along with photoinitator (Darocur-1664). Then the films were soaked in the formulations and irradiated under UV radiation at different doses for the improvement of physico-mechanical properties of chitosan films. The cured films were characterized by measuring TS, Eb, polymer loading (PL), water absorption and gel content properties. The formulation containing 43% MMA and 15% oligomer in methanol solution showed the best performance at 20th UV pass for 4 min soaking time.  相似文献   

4.
Natural polymer, chitosan was obtained from dried prawn shell waste through the preparation of chitin and was characterized. Thin film of chitosan was prepared by casting method from its 2% chitosan solution. Mechanical properties like tensile strength (TS), elongation at break (Eb) of chitosan film were studied. Five formulations were developed with 2-ethyl-2-hydroxy methyl-1,3-propandiol trimethacrylate (EHMPTMA), a trifunctional monomer and 2-ethylhexyl acrylate (EHA), a monofunctional monomer in the presence of photoinitiator Darocur-1664 (2%). The film was soaked in those monomer formulations in dissimilar soaking times and irradiated under UV-radiation at different radiation intensities for the improvement of the properties of chitosan film. The cured films were then subjected to various characterization tests like TS, Eb, polymer loading (PL), water absorbency, gel content etc. The formulation, containing 25% EHMPTMA and 73% EHA showed the best performance at 10th UV passes of UV radiation for 4 min soaking time.  相似文献   

5.
In this work the effects of natural gum and its simulated compound (Arabic gum) on an acrylic based clear coat applied on different basecoats were studied. The experiments were conducted at various aging processes to simulate the real outdoor conditions by the aid of different analytical techniques including optical microscopy, scanning electron microscopy, ATR-FTIR spectroscopy, DMTA and micro hardness measurements, by which the chemical and mechanical responses of the system were investigated. Results showed that, Arabic and natural gums, due to their sticky nature in the slurry state, can strongly attach to the clear coat surface and perform a significant stress during the drying process. It was shown that, this stress was responsible for the surface cracks produced by gums, indicating a physical degradation mechanism. However, it was revealed that, biological materials could also affect the clear coat chemically. In addition, different surface cracks produced by gums on the clear coat applied on silver and black basecoats were observed and attributed to their surface chemistry and mechanical properties differences. It was shown that different amounts of aluminum flakes existed in the basecoat layers of silver and black system can effectively influence the curing degree of the clear coats applied on the se systems. This leads to different cross-linking density, toughness and surface chemistries. Therefore, different interactions of clear coats and gums, as well as stress distribution and relaxation behaviors of these two systems were found effective in such degradations. Comparison of the mechanical properties and visual effects of gums on clear coats indicated a more severe degradation under the post aging, due to the greater effect of UV light.  相似文献   

6.
Chitosan, a natural polymer, was prepared by deacetylation of chitin which was obtained from dried prawn shell and was characterized. Thin chitosan film of chitosan was prepared by casting method from 0.2 % chitosan in 2 % acetic acid solution. Five formulations were developed with ethylene glycol dimethacrylate and (2-hydroxyethyl) methacrylate along with photo-initiator, Darocur-1664 (4 %). The chitosan film was soaked in the formulations at different soaking times and irradiated under UV-radiation at different intensities for the improvement of its physical and mechanical properties. The cured chitosan films were then subjected to various mechano-chemical tests like tensile strength, elongation at break, polymer loading, water absorption and gel content. The formulation containing 30 % ethylene glycol dimethacrylate and 66 % (2-hydroxyethyl) methacrylate showed the best performance at the 30th UV pass of UV-radiation for 3 min soaking time.  相似文献   

7.
Shellac (SL) films were prepared by casting and were grafted with various acrylic monomers of different functionalities using gamma radiation. Different formulations of shellac with varying concentrations (3, 5 and 7%) of these acrylic monomers such as 2-hydroxyethyl methacrylate (HEMA), 2-ethylhexyl acrylate (EHA) and 1,4-butanediol diacrylate (BDDA) in methanol were prepared. The pure shellac and other treated films were then irradiated under gamma radiation (Co-60) at different doses (0.5–5 kGy) at a dose rate of 3.5 kGy/h where 1 Gy = 1 J/kg = 100 rads. The mechanical properties like tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. The mechanical properties of the irradiated shellac films demonstrated superior values. Among the formulations, shellac grafted with BDDA (SL-g-BDDA) showed the highest TS and Eb values which were 543 and 168% higher than those of raw shellac films, respectively. The water uptake behavior of raw and treated films was also studied. The raw film showed 11% water uptake but HEMA containing film showed 67%. In the soil burial test, HEMA containing shellac film was rapidly degraded than other raw, EHA and BDDA grafted films. Thermal properties indicated that grafting of acrylic monomers decreased the melting temperature of the pure shellac films.  相似文献   

8.
Jute yarns were grafted with a single impregnating monomer 1,6-hexanediol diacrylate (HDDA) in order to improve the physicomechanical properties. Jute yarns soaked for different soaking times (3, 5, 10, and 30 minutes) in HDDA+MeOH solutions at different proportions (1–10% HDDA in MeOH [v/v] along with photoinitiator Darocur-1664 [3%]) were cured under UV lamp at different UV radiation intensities (two, four, six, and eight passes). Concentration of monomer, soaking time, and intensity of UV radiation were optimized with extent of mechanical properties such as tensile strength, elongation at break, and modulus. Enhanced tensile strength (67%), modulus (108%), and polymer loading (11%) were achieved with 5% HDDA concentration, 5-minute soaking time, fourth pass of UV radiation. To further improve the mechanical properties, the jute yarns were pretreated with UV radiation (5, 10, 15, 30, and 50 passes) and treated with optimized monomer concentration (5%). UV-pretreated samples showed the enhanced properties. The tensile strength and modulus increase up to 84% and 132%, respectively, than that of virgin jute yarn. An experiment involving water absorption capacity shows that water uptake by treated samples was much lower than that of the untreated samples. During the weathering test, treated yarns exhibited less loss of mechanical properties than untreated yarns.  相似文献   

9.
The jute yarn was grafted with acrylamide monomer (AA) under ultraviolet (UV) radiation to modify its mechanical and degradable properties. A number of AA solutions of different concentrations in methanol (MeOH) along with photoinitiator Irgacure 907 [2-methyl-1-(4-methylthiophenyl)-2-morpholinopropanone-1] were prepared. The monomer concentration and irradiation time were optimized. Jute yarn grafted with 30% AA under UV radiation for 60 min showed of the highest polymer loading (PL) value of 22% with a enhanced tensile strength (TS) value of 195% and elongation at break (Eb) value of 256% compared to untreated jute yarn. To further improve the properties of jute yarn, a number of additives (1%) such as urea, polyvinylpyrrolidone, urethane acrylate, and urethane diacrylate were used in the AA (30%) solution. Among all the additives used, urea significantly influenced the PL (27%), TS (230%), and Eb (264%) values of the treated jute yarns. Water uptake and the degradation properties of treated and untreated jute yarn caused by simulated weathering and in soil (25% water) were also studied. The rate of degradation of grafted sample is lower then that of untreated sample. DSC studies showed the thermal stability of the AA plus urea grafted sample.  相似文献   

10.
The waterborne polyurethane (PU) prepolymer was prepared based on isophorone diisocyanate (IPDI), polyester polyol (N220), dimethylol propionic acid (DMPA) and hydroxyethyl methyl acrylate (HEMA). The modified waterborne polyurethane–acrylate (PUA) emulsions were obtained with different proportions of acrylate (butyl acrylate and methyl methacrylate) and initiating agent by in situ dispersion technique. The structures and thermal properties of prepared PU and PUA were analyzed and characterized with FT-IR, UV–Vis spectroscopy and DSC. The PUA hybrid samples had lower glass transition temperature of hard segment and higher decomposition temperatures than PU sample. Performances of the emulsion and film were studied by means of apparent viscidity, particle size and polydispersity, surface tension and mechanical properties. The results indicated that the particle sizes of the PUA dispersions were larger than those of the pure PU and the solvent resistance, mechanical properties of PUA films was improved compare with the unmodified polyurethane film. The film had the biggest hardness and the least water absorption when the BA/MMA mass ratio 5:5 modified PU. The obtained PUA have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings and wood finishes.  相似文献   

11.
To develop an environmentally degradable polymer material, a masterbatch pro-oxidant system was blended into low-density polyethylene. The polymer film samples were prepared by compression molding. The prepared films were placed under the natural environment of Tehran for weathering studies and accelerated conditions were also performed for UV aging in UV chamber. At different time intervals, the changes in chemical structure of photosensitized polyethylene samples were studied by FTIR and compared to that of the control polyethylene films. Also the mechanical properties of photosensitized polyethylene films were determined in comparison with the control films by measuring the tensile strength and elongation at break after exposure to the natural environment and UV radiation. Results showed that the overall rate of degradation process is clearly dependent on the polyethylene composition, test conditions (natural or accelerated), season of the year, and the duration of the weathering of the samples.  相似文献   

12.
In this study, effects of saturated acids on physical properties, including hardness, impact strength, flexural properties and thermal properties, of unsaturated polyester or UPE resins prepared from recycled PET bottles and fabrics were investigated. PET was depolymerized by glycolysis reaction with the excess propylene glycol in the presence of zinc acetate as a catalyst. UPE resins were then synthesized by polyesterification of these glycolyzed products with maleic anhydride as an unsaturated diacid as well as succinic acid and adipic acid as a saturated diacid. With the addition of styrene monomer, UPEs were subsequently casted into specimens by crosslinking reaction using methyl ethyl ketone peroxide and cobalt octoate as an initiator and a catalyst, respectively. Physical properties of the cured specimens were then studied. The results showed that, when a saturated acid was incorporated, the hardness of the cured UPE resins decreased due to the decreasing amount of crosslinks. The extended distance between crosslinking sites on molecular chains facilitated load distribution, resulting in the significant improvement of impact strength. The flexural strength was also improved when the small amount of saturated acid was used. The onset thermal degradation temperatures and the glass transition temperatures of the prepared UPE resins were almost unchanged.  相似文献   

13.
In this research tannic acid was used to prepare soy-based adhesives for making plywood and fiber board. The different resin formulations were analyzed by Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and its derivative as a function of temperature (DTG) and Fourier Transform Infra-red (FTIR) spectroscopy. The results showed that the addition of tannic acid to soy-based adhesive decreased soy-based adhesive viscosity and its pH. The DSC analysis showed that the denaturation temperature of soy-based adhesives decrease by adding tannic acid. The TGA and DTG curves showed that the thermal degradation of soy flour starts above 146 °C. The FTIR spectroscopy results also showed that the soy flour amino acids appeared to react well with tannic acid. Furthermore, delamination and shear strength test results showed the good water resistance of plywood bonded with soy-based tannic acid-modified adhesive. The mechanical and physical properties such as MOR, MOE, IB, and water resistance of fiberboard were improved, by adding tannic acid to the soy-based adhesive.  相似文献   

14.
Surface treated macro and nanoparticle TiO2 samples have been prepared, characterised and their efficiency as UV blockers evaluated in clear coatings and paints. The particle size of the ‘base’ TiO2 has been optimised to block UV radiation and the surface treatment developed to deactivate the photocatalytic activity of the surface of the TiO2 particles. The resultant UV blockers have been evaluated in both solvent and water-based clear coatings. Nanoparticle TiO2 has been prepared from ‘seed’ and the particle size was controlled by calcination. It was found that the choice of particle size is a compromise between UVA absorption, UVB absorption, visible transmission and photoactivity. It has been demonstrated that TiO2 with a crystallite size of 25 nm yields a product with the optimum properties. A range of dispersants was successfully used to disperse and mill the TiO2. Both organic and inorganic dispersants were used; 2-amino-2-methyl-1-propanol and 1-amino-2-propanol (MIPA) and P2O5 and Na2SiO3 respectively. The surface of the nano-TiO2 was coated with mixed oxides of silicon, aluminium, zirconium and phosphorous. Addition of the resultant coated nano-rutiles to an Isocyanate Acrylic clear coating prolonged the lifetime of that coating compared to the blank. Generally, a surface treatment based on SiO2, Al2O3 and P2O5 was more successful than one based on ZrO2, Al2O3 and P2O5. Higher addition levels of the surface treatment were beneficial for protecting the polymeric coating. The UV blocker products were also evaluated in a water-based acrylic, first a water-based dispersion of the UV blocker was prepared before addition to the acrylic. The dispersions and resultant acrylic thin films were evaluated using UV/Vis spectroscopy and durability assessed. The ratio of absorbance at 300:500 nm for the water-based dispersion was shown to be a good predictor of both the transparency of the resultant acrylic thin film and the durability of that film, in terms of weight loss. Macro grade titanium dioxide pigments were also prepared and coated with treatments of silica, alumina and siloxane and their photo-stabilising activity in alkyd paint film assessed and found to be directly related to the electron–hole pair mobility and trapping as determined by micro-wave spectroscopy.  相似文献   

15.
Over the past few decades, the industry developed an increasing interest in using renewable, bio-based thermosetting polymers as matrix systems for composites and coating systems. In the present paper an acrylated epoxidized linseed oil (AELO) was synthesized from epoxidized linseed oil (ELO) through ring opening of the oxirane group using acrylic acid as the ring opening agent. The synthesized AELO was mixed with three different photoinitiators and cured under monochromatic conditions (???=?365?nm) at different light intensities and at different temperatures. The concentration of the initiators was aligned that all initiators absorb at 365?nm the same amount of light. The evolution of cure was monitored by using real-time infrared spectroscopy with a heated attenuated total reflection unit. The decrease of absorption in the measured spectra at 1,406?cm?1 was used to calculate the conversion of acrylic double bonds with increasing time of UV light exposure to get information about the cure kinetics for each AELO mixture at different light intensities and different temperatures. Wood substrates were coated in a preliminary work with the AELO mixtures and after UV-curing some technological coating properties like gloss, scratch resistance, adhesion, and solvent resistance were tested. In combination with the information about the cure kinetics in the present work the coating properties were correlated with the cure evolution and the final degree of double bond conversion. The found correlation can be used in the future to find optimized coating conditions for the AELO mixtures on wood substrates.  相似文献   

16.
EVA/PLA blends compatibilized with EVA-g-PLA grafted copolymers synthesized by reactive extrusion, through transesterification reaction between ethylene-vinyl-acetate (EVA) and polylactide (PLA) using titanium propoxide (Ti(OPr)4) as catalyst, were characterized when exposed to different environments. Stability to UV radiation was assessed exposing the samples to a Xenon lamp, which simulates the sun UV spectrum and the biodegradability was evaluated by biochemical oxygen demand (BOD) in a closed respirometer. Exposed samples were removed periodically and analyzed by several analytical techniques, such as, FTIR, DSC, rheology and tensile tests. The results obtained evidenced that UV radiation induces structural modifications, which affect substantially rheological and mechanical properties. Moreover, the blend with higher amount of copolymer exhibits lower photo durability and greater biodegradability. From the environmental point of view, these new materials are very promising for application with short lifetime, like packaging.  相似文献   

17.
The photooxidation of a nonwoven polyethylene fabric was investigated using Fourier transform infrared photoacoustic spectroscopy. The infrared spectroscopic data indicated that hydroperoxide, alcohol, aldehyde, ketone, carboxylic acid, and anhydride groups were formed as the products of the photooxidation of the polyethylene fabric and that the relative amount of carboxyl among all carbonyls increased as the photooxidation progressed. The distribution of the photooxidation products was inhomogeneous between the two surfaces of the fabric. The highest degree of photooxidation occurred on the surface of the fabric facing the UV radiation source, whereas the lowest degree of photooxidation was on the back surface of the fabric. We also found that the polyethylene nonwoven fabric showed a slower photooxidation rate than the polypropylene nonwoven fabric. The UV radiation at 254 nm caused photooxidation of polyethylene. No photooxidation was observed in the fabric exposed to the UV radiation at 350 nm under the same conditions.  相似文献   

18.
太阳能光催化降解法去除水中罗丹明染料的研究   总被引:16,自引:0,他引:16  
在太阳光的紫外线辐射下,应用载有TiO2薄层的平板式光催化反应器,进行了光催化降解法去除水中罗丹明染料的试验,结果表明,当紫外线辐射强度平均为33W/m^2,反应时间为18min时,水中罗丹明染料浓度由10mg/L降至0.01mg/L,在室国家排放标准,探讨了太阳能光催化反应系统的改进方向及工业化应用的有关问题。  相似文献   

19.
The present work aims to the valorization of regenerated low density polyethylene (LDPE) by blending with small quantities of ethylene-propylene-diene monomer (EPDM). Three types of regenerated LDPE (rLDPE) from different waste sources (greenhouses, milk pouches,...) were characterized in terms of physico-chemical (density, melt flow index, water absorption, melting temperature and structure by Fourier transform infrared (FTIR) spectroscopy) and mechanical properties (tensile properties and hardness). The optimization of the peroxide content required for the crosslinking of the LDPE/EPDM blends was due by measuring torque and tensile strength. Once the peroxide content was optimized, different blends were obtained by varying the EPDM content. Then they were characterized physically (density, water absorption) and mechanically (tensile properties and hardness). Finally, the blends behavior under the conjugated effect of heat and water was determined at 70 °C for 7 days. The obtained results showed that this kind of blending has contributed in improving the performance of regenerated LDPE.  相似文献   

20.
In this reported study, a renewable and eco-friendly blood meal-based (BM) bio-adhesive was developed for the plywood fabrication. Polyvinyl alcohol (PVA), sodium dodecyl sulphate (SDS), and triglycidylamine (TGA) were respectively employed as emulsifier, denaturant and crosslinking agent to modify the BM adhesive. Three-ply plywood was manufactured and its wet shear strength was tested. The solid content, residual rate, functional groups, thermal degradation behavior, and cross section micromorphology of the resulting adhesives were characterized in detail. The experimental results showed that PVA prevented the BM agglomeration, SDS unfolded the structure of protein and then TGA reacted with the exposed active groups in the BM protein molecules, forming a cross-linked structure. As a result, the thermal stability of the modified BM adhesive was improved and the cross section of the cured adhesive was more homogeneous, which enhanced the performance of the adhesive. Consequently, the wet shear strength of the plywood bonded by modified BM adhesive markedly increased by 388% to 1.27 MPa. Compared with soy bean meal-based adhesive, a higher protein content and hydrophobic amino acids content of BM are benefit for fabricating high performance bio-based adhesive, which rendered the BM adhesive practical for plywood industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号