首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen turnover on organic and conventional mixed farms   总被引:1,自引:0,他引:1  
Separate focus on crop fertilization or feeding practices inadequately describes nitrogen (N) loss from mixed dairy farms because of (1) interaction between animal and crop production and between the production system and the manager, and (2) uncertainties of herd N production and crop N utilization. Therefore a systems approach was used to study N turnover and N efficiency on 16 conventional and 14 organic private Danish farms with mixed animal (dairy) and crop production. There were significant differences in N surplus at the farm level (242 kg. N/ha. vs. 124 kg. N/ha. on conventional and organic dairy farms respectively) with a correlation between stocking rate and N surplus. N efficiency was calculated as the output of N in animal products divided by the net N import in fodder, manure and fertilizer. N turnover in herd and individual crops calculated on selected farms showed differences in organic and conventional crop N utilization. This is explained via a discussion of the rationality behind the current way of planning the optimum fertilizer application in conventional agriculture. The concept of marginal N efficiency is insufficient for correcting problems of N loss from dairy farms. Substantial reductions in N loss from conventional mixed dairy farms is probably unlikely without lower production intensity. The concept of mean farm unit N efficiency might be a way to describe the relation between production and N loss to facilitate regulation. This concept is linked to differing goals of agricultural development—i.e. intensification and separation vs. extensification and integration. It is discussed how studies in private farms—using organic farms as selected critical cases—can demonstrate possibilities for balancing production and environmental concern.  相似文献   

2.
Efforts have been made to convert the guar gum industrial waste into a value-added product, by employing a new earthworm species for vermicomposting e.g. Perionyx sansibaricus (Perrier) (Megascolecidae), under laboratory conditions. Industrial lignocellulosic waste was amended with other organic supplements (saw dust and cow dung); and three types of vermibeds were prepared: guar gum industrial waste + cow dung + saw dust in 40: 30: 30 ratio (T1), guar gum industrial waste + cow dung + saw dust in 60: 20: 20 ratio (T2,), and guar gum industrial waste + cow dung + saw dust in 75: 15: 10 ratio (T3). As compared to initial concentrations, vermicomposts exhibited a decrease in organic C content (5.0–11.3%) and C:N ratio (11.1–24.4%) and an increase in total N (18.4–22.8%), available P (39.7–92.4%), and exchangeable K (9.4–19.7%) contents, after 150 days of vermicomposting. A vermicomposting coefficient (VC) was used to compare of vermicomposting with the experimental control (composting). P. sansibaricus exhibited maximum value of mean individual live weight (742.8 ± 21.1 mg), biomass gain (442.94 ± 21.8 mg), growth rate (2.95 ± 0.15 mg day−1), cocoon numbers (96.0 ± 5.1) and reproduction rate (cocoons worm−1 day−1) (0.034 ± 0.001) in T2 treatment. In T3 maximum mortality (30.0 ± 4.01 %) in earthworm population was observed. Overall, T2 vermibed appeared as an ideal substrate to manage guar gum industrial waste effectively. Vermicomposting can be proposed as a low-input basis technology to convert industrial waste into value-added biofertilizer.  相似文献   

3.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

4.
Photobacterium phosphoreum is a marine bacterium which is used extensively as a bioluminescent indicator of pollutants, where the presence of toxicants diminishes light output. To evaluate the utility of cell immobilisation in continuous toxicity testing, the sensitivity of P. phosphoreum to five gelling agents was evaluated relative to the retention of bioluminescence in 3% NaCl-glycerol suspensions. Following storage at 4°C, the control cultures retained light output for up to 2 weeks before significant decline; alginate-glycerol suspensions were stable for up to 4 weeks and bioluminescence was detectable for up to 6 weeks. Cells stored in agar were no more stable than the control, whereas cells gelled in agarose and low-melting point agarose showed a significant decline in bioluminescence within 2 weeks of storage. Bioluminescence was totally retained in alginate-glycerol suspensions stored at −80°C for up to 12 weeks. P. phosphoreum was successfully immobilised in strontium alginate and showed a dose-related response to four of the five heavy metal ions, SDS and pentachlorophenol tested when responses were followed over a time-course. A flow-through system for Sr-alginate immobilised cells was developed and conditions for operation were optimised. When cells were exposed to a pulse of 4-nitrophenol or salicylate then the nutrient feed continued, bioluminescence declined in response (pulse of 4–6 min) to these pollutants then recovered to a new stable rate of decline which was faster than the pre-exposure rate. These results demonstrate the potential of using immobilised P. phosphoreum in a continuous flow-through system for real-time environmental monitoring of water quality.  相似文献   

5.
The objective of this work was to study the technological feasibility of treating wastewater from a personal care industry (PCI-WW) in a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass on polyurethane foam. An assessment was made on how system efficiency and stability would be affected by: increasing organic load; supplementation of nutrients and alkalinity; and different feed strategies. The AnSBBR operated with 8-h cycles, stirring speed of 400 rpm, temperature of 30 °C, and treated with 2.0 L wastewater per cycle. First the efficiency and stability of the AnSBBR were studied when submitted to an organic loading rate (OLR) of 3.1–9.4 gCOD/(L d), and when the PCI-WW was supplemented with nutrients (sucrose, urea, trace metals) and alkalinity. The AnSBBR was shown to be robust and presented stability and removal efficiency exceeding 90%. At an OLR of 12.0 gCOD/(L d) efficiency became difficult to maintain due to the presence of commercial cleansers and disinfectants in the wastewater lots. In a subsequent stage the AnSBBR treated the wastewater supplemented with alkalinity, but with no nutrients at varying feed strategies and maintaining an OLR of approximately 9.0 gCOD/(L d). The first strategy consists of feeding 2.0 L of the influent batchwise [OLR of 9.4 gCOD/(L d)]. In the second 1.0 L of influent was fed-batchwise and an additional 1.0 L was fed fed-batchwise [OLR of 9.2 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was maintained but supplied in different periods. In the third strategy 1.0 L of treated effluent was maintained in the reactor and 1.0 L of influent was fed fed-batchwise [OLR of 9.0 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was different but the feed period was the same and the OLR was maintained by increasing the influent concentration. Comparison of the first and second strategies revealed that organic matter removal efficiency was unaffected (exceeding 90%). The third strategy resulted in a reduction in average removal efficiency from 91 to 83% when compared to the first one. A kinetic study resulted in first order kinetic parameters ranges from 0.42 to 1.46 h−1 at OLRs from 3.1 to 12.0 gCOD/(L d), respectively, and the second feed strategy [OLR of 9.2 gCOD/(L d)] was shown to be the most favorable.  相似文献   

6.
The aim of this study was to assess the effects of forest management on carbon sequestration in forests and wood products by using a gap-type forest model interfaced with a wood product model. The assessment is based on total carbon sequestration, i.e. the amount of carbon left in vegetation, litter, soil organic matter and products when the flows of carbon back to the atmosphere have been subtracted. Thirty mixed-species stands, representing medium fertility sites in southern Finland, were included in each simulation for 300 years under current climatic conditions and predicted conditions of changing climate. The average total balance for the first 100 years was higher in the unmanaged system than in the managed system, but for the second and third 100-year periods the results were clearly opposite. Differences in the total balance between the treatments were larger during the first 100 years than over the whole 300-year period. Under conditions of changing climate, differences in carbon sequestration between management options were more pronounced than under current climatic conditions. Under current climatic conditions with the 100-year time frame, the ratio between the total annual balance and annual gross production was 0·208–0·289. Over the whole 300 years, however, efficiency was much lower, 0·088–0·121. Under changing climatic conditions, efficiency was also lower, 0·182–0·252 and 0·081–0·096, respectively. Different management alternatives clearly produced different amounts of timber for the production process; under conditions of changing climate, timber production was substantially enhanced. However, total carbon storages at the end of the simulation varied less than timber production. In the managed system, the flow back into the atmosphere was largest from litter, 41–51% of the total outflow, the flow from vegetation was 23–28%, from soil organic matter 22–25%, emissions from products 1–7%, and emissions from landfills 0–3%. If emissions due to the use of machinery in timber harvesting and transportation were included, they made up only 0·03–0·33% of the total outflow.  相似文献   

7.
The practice of vermiculture is at least a century old but it is now being revived worldwide with diverse ecological objectives such as waste management, soil detoxification and regeneration and sustainable agriculture. Earthworms act in the soil as aerators, grinders, crushers, chemical degraders and biological stimulators. They secrete enzymes, proteases, lipases, amylases, cellulases and chitinases which bring about rapid biochemical conversion of the cellulosic and the proteinaceous materials in the variety of organic wastes which originate from homes, gardens, dairies and farms. The process is odour free because earthworms release coelomic fluids in the decaying waste biomass which has anti-bacterial properties which kills pathogens. The species used in India were Indian blue (Perionyx excavatus), African night crawler (Eudrilus euginae) and the Tiger worm (Elsinia foetida). E. foetida was used in Australia. E. euginae was found to have higher feeding, growth and biodegradation capacity compared to other two species.Earthworm action was shown to enhance natural biodegradation and decomposition of wastes (60–80 percent under optimum conditions), thus significantly reducing the composting time by several weeks. Within 5 to 6 weeks, 95–100 percent degradation of all cellulosic materials was achieved. Even hard fruit and egg shells and bones can be degraded, although these may take longer.  相似文献   

8.
Textile mill waste can be vermicomposted if it is mixed in the range of 20–30% with cow dung. This article reports the effect of inoculation, of nitrogen fixing Azotobacter chroococcum strain; Azospirillum brasilense strain and phosphate solubilizing Pseudomonas maltophila, on nitrogen and phosphorus content of vermicomposts prepared from cow dung (CD) and cow dung spiked textile mill sludge (CD + STMS). The CD vermicompost was more supportive to the growth and multiplication of all the three bacteria than CD + STMS vermicompost. In Azotobacter chroococcum treated vermicomposts maximum nitrogen content was recorded between 45 and 60 days [CD␣vermicompost (25.9 ± 0.45 g kg−1) and CD + STMS vermicompost (20.6 ± 0.62 g kg−1)] followed by Azospirillum brasilense inoculation [CD vermicompost (19.4 ± 0.60 g kg−1) and CD + STMS vermicompost (18.6 ± 0.17 g kg−1)]. Phosphorus content in Pseudomonas maltophila inoculated CD vermicompost was 20.8 ± 0.20 g kg−1 and CD + STMS vermicompost was 13.4 ± 0.45 g kg−1 after 75th day of inoculation.  相似文献   

9.
Two composts were obtained by co-composting of a concentrated depotassified beet vinasse and cotton gin waste using two different aeration systems: static aerated pile (forced aeration provided by a blower whom operated in the positive mode) and windrow (turned pile). The composting mixtures were cotton gin trash (55%) and vinasse (45%) (dry weight). In static pile, the total amount of vinasse was added at the beginning of the process whereas, in windrow two additions of vinasse were performed. Differences in temperature changes between both composting systems were found: a faster increase of temperature in the windrow (54 °C at 7 days) than in the static pile (45 °C at 21 days) was observed. Probably in the static pile system, the compaction of the substrates made difficult the correct distribution of the air inside the pile. Moreover, after the second addition of vinasse a new thermophilic phase was started in windrow. The different aeration systems and the way of addition of vinasse could cause differences in organic matter (OM) degradation and in weight (22.6% for the static pile and 26.7% for the windrow) and gas losses during the process. Nevertheless, the composts obtained by the two systems had a high fertilizer value (25.1 g kg−1 N; 3.2 g kg−1 P2O5; 21.4 g kg−1 K2O; C/N8) for compost obtained in static pile and (16.2 g kg−1 N; 3.4 g kg−1 P2O5; 16.1 g kg−1 K2O; C/N 12) for compost obtained in the windrow). A high degree of stability was reached in the final composts. Composting of vinasse with cotton gin waste serves two objectives, disposal of wastes and recycling of waste components.  相似文献   

10.
More than 273 tonnes of cadmium have been added to Western Australian ecosystems through the application of superphosphate fertilisers since 1982. Fifty percent of this is water soluble and therefore eventually leaches into waterbodies and accumulates in the sediments. From this source, it enters the food web through algae and benthic animals and may ultimately be passed to humans. This is reflected in the cadmium levels of the freshwater mussels (Westralunio carteri) that exceeded statutory Australia New Zealand Food Authority (ANZFA) guidelines for Maximum Permissible Concentrations (MPCs) with respect to human consumption. The cadmium levels bioaccumulated in freshwater mussels elevated with increasing catchment clearing, being highest in degraded catchments. The MPC for Cd in crustaceans have recently been removed, yet tissues within the freshwater crayfish (Cherax tenuimanus) frequently exceeded the old MPC (0·2 μCd g−1wet weight). Marron are sometimes consumed in considerable quantities and the risk to human health posed by a high Cd intake is briefly summarised. Finally, a number of management options concerned with reducing the level of Cd from fertilisers passing to humans are reviewed.  相似文献   

11.
Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM2.5 mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH4)2SO4, NH4NO3, and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH4)2SO4 and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH4)2SO4, 5.1% that in NH4NO3, and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM10 particles was determined to be 2.2 ± 0.6 and 4.6 ± 1.7 m2 g−1 under dry (RH < 40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80 ± 0.08 and 0.90 ± 0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.  相似文献   

12.
The potential of the epigeic earthworm Eisenia fetida to stabilize sludge␣(generated from a distillation unit of the sugar industry) mixed with cow dung, in different proportions i.e. 20% (T1), 40% (T2), 60% (T3) and 80% (T4) has been studied under laboratory conditions for 90 days. The␣ready vermicompost was evaluated for its’ different physico-chemical parameters using standard methods. At the end of experiment, all vermibeds expressed a significant decrease in pH (7.8–19.2%) organic C (8.5–25.8%) content, and an increase in total N (130.4–170.7%), available P (22.2–120.8%), exchangeable K (104.9–159.5%), exchangeable Ca (49.1–118.1%), and exchangeable Mg (13.6–51.2%) content. Overall, earthworms could maximize decomposition and mineralization efficiency in bedding with lower proportions of distillery sludge. DTPA extractable metal reduction in substrate was recorded between the ranges of 12.5–38.8% for Zn, 5.9–30.4% for Fe, 4.7–38.2% for Mn and 4.5–42.1% for Cu. Maximum values for the mean individual live weight (809.69 ± 20.09 mg) and maximum individual growth rate (mg wt. worm−1 day−1) (5.81 ± 0.18) of earthworms was noted in T1 treatment, whereas cocoon numbers (69.0 ± 7.94) and individual reproduction rate (cocoon worm−1 day−1) (0.046 ± 0.002) was highest in T2 treatment. Earthworm mortality tended to increase with increasing proportion of distillery sludge, and maximum mortality in E. fetida was recorded for the T4 (45.0 ± 5.0) treatment. Results indicate that vermicomposting might be useful for managing the energy and nutrient rich distillery sludge on a low-input basis. Products of this process can be used for sustainable land restoration practices. The feasibility of worms to mitigate the toxicity of metals also reduces the possibility of soil contamination, which has been reported in earlier studies during direct field application of industrial wastes.  相似文献   

13.
Physico-chemical characteristics of the feed and optimum worm density are important parameters for the efficient working of a vermicomposting system. Overcrowding of worms can affect the efficiency of a vermicomposting system even if all other parameters have been optimized. This article reports the effect of stocking density and feed quality on the growth and fecundity of Eisenia fetida under laboratory conditions. The feed mixtures contained cow dung and textile mill wastewater sludge in different ratios. Three feed mixtures and five stocking rates (1, 2, 4, 8, and 12) were tested for 12 weeks. The results showed that E. fetida growth rate was faster at higher stocking densities; however, biomass gain per worm was faster at lower stocking densities. Sexual maturity was attained earlier at higher stocking densities. Growth rate was highest in 100% cow dung at all the stocking densities when compared to textile mill wastewater sludge containing feed mixtures. A worm population of 27–53 worms per kg of feed was found to be the most favorable stocking density.  相似文献   

14.
Brazil produces approximately 242,000 t of waste per day, 76% of it being dumped outdoors and only 0.9% recycled, including composting, which is an alternative still little known in Brazil. In search of a better destination for residues produced by domestic activities, composting stands as a feasible alternative. Organic compost from waste may be used for various purposes, among which are soil recovery, commercial production, pastures, lawns and reforestry and agriculture. However, the quality of the compost determines the growth and the development of plants. The effect of compost made from urban waste on corn plant (Zea mays L.) growth was investigated. Two types of compost were used: the selected compost (SC), produced from organic waste selectively collected; and the non-selected compost (NSC), taken from a 15-year-old cell from the Canabrava land-fill, located in Salvador, Bahia, Brazil (altitude 51 m, 12°22′–13°08′S, 38°08′–38°47′W). Corn was seeded in polyethylene pots, with soil-compost mixing substrate in the proportion of 0, 15, 30, 45 and 60 t ha−1 equivalent doses. Chemical analyses of the compost and growth properties of the plant like chlorophyll content; height and stem diameter; aerial and radicular dry biomasses, were used to evaluate compost quality. Plants cultivated with SC presented a superior gain, being of 52.5% in stem diameter, 71.1 and 81.2% in root and stem biomasses, respectively. Chlorophyl content alterations were observed in plants from treatments using 30 t compost ha−1 dose onwards. Conventional and multivariate statistical methods were used to evaluate these results. The beneficial action of organic compost in plant growth was confirmed with this research.  相似文献   

15.
Recycling of plant materials and agricultural residues for biomethanation was attempted in vials. The methanogenic activities of certain sewage samples have also been tested. Both sterilized and non-sterilized biomasses were used. Biomethanation was carried out with dung samples (cow, goat, buffalo, piggery wastes and poultry wash) as wild populations of microbes and in combination with other microbial isolates (isolated in the laboratory).Biomethanation had been observed to be good in most cases and particularly with the sterilized biomass. Mixed inoculum (dung samples and poultry wash) was found to be best for biomethanation. Of the microbe isolates, isolates from buffalo, pig and paper mill wastes appear to be most effective. Pretreated sawdust and rice straw were found to be good subtrates for biomethanation. Of the different plant biomass used Spirogyra (algae), Ipomea and water hyacinth were most effective whereas Jatropa gossypifolia and Parthenium sp. were the least effective. Biomethanation of Spirogyra was carried out both in anoxic and oxic conditions. Though methane production decreased enormously under oxic conditions, definite methane production continued indicating that the biomethanation process is not exclusively anoxic. Similarly, biomethanation of sewage samples from different sewage treatment plants were carried out with and without isolated methanogens and methane production was found to be moderate.  相似文献   

16.
The biosorption of the heavy metals Cu2+ and Zn2+ by dried marine green macroalga (Chaetomorpha linum) was investigated. The biosorption capacities of the dried alga for copper and zinc were studied at different solution pH values (2–6), different algal particle sizes (100–800 μm) and different initial metal solution concentrations (0.5–10 mM). An optimum pH value of 5 was found suitable for both metal ions biosorption for both metal ions. At the optimum particle size (100–315 μm), biosorbent dosage (20 g/l) and initial solution pH (pH 5), the dried alga produced maximum copper and zinc uptakes values (qmax) of 1.46 and 1.97 mmol/g respectively (according to the Langmuir model). The kinetic data obtained at different initial metal concentrations indicated that the biosorption rate was fast and most of the process was completed within 120 min. This study illustrated an alternative technique for the management of unwanted biological materials using processed algal material. C. linum is one of the fast-growing marine algae in the lake of Tunis and could be utilized as a biosorbent for the treatment of Cu2+ and Zn2+ contaminated wastewater streams.  相似文献   

17.
The objective of this research was to evaluate the impacts of increasing product removal on biomass and nutrient content of a central hardwood forest ecosystem. Commercial thinning, currently the most common harvesting practice in southern New England, was compared with whole-tree clearcutting or maximum aboveground utilization. Using a paired-watershed approach, we studied three adjacent, first-order streams in Connecticut. During the winter of 1981–82, one was whole-tree clearcut, one was commercially thinned, and one was designated as the untreated reference. Before treatment, living and dead biomass and soil on the whole-tree clearcut site contained 578 Mg ha–1 organic matter, 5 Mg ha–1 nitrogen, 1 Mg ha–1 phosphorus, 5 Mg ha–1 potassium, 4 Mg ha–1 calcium, and 13 Mg ha–1 magnesium. An estimated 158 Mg ha–1 (27% of total organic matter) were removed during the whole-tree harvest. Calcium appeared to be the nutrient most susceptible to depletion with 13% of total site Ca removed in whole-tree clearcut products. In contrast, only 4% (16 Mg ha–1) of the total organic matter and 2% of the total nutrients were removed from the thinned site. Partial cuts appear to be a reliable management option, in general, for minimizing nutrient depletion and maximizing long-term productivity of central hardwood sites. Additional data are needed to evaluate the long-term impacts of more intensive harvests.  相似文献   

18.
Removal of copper from aqueous solutions containing 100–1000 ppm, using different Indian bark species, was performed on laboratory scale. The percentage removal of metal ions depends on the solution pH, bark species and time. The efficiency of copper removal by the used raw barks increases with a rise of solution pH and reaches a maximum of about 65–78% around pH 4–5. However, the decontaminated aqueous solutions were colored due to the dissolution of soluble organic compounds contained in the raw bark. This increases the biological and chemical oxygen demand (BOD and COD) of the solutions as well as the total organic carbon content (TOC). For this reason, raw bark should be treated either by chemical or biological means. Such treatment will allow the extraction of the soluble organic compounds and increase the chelating capacity and efficiency of the treated bark. Depending on the pH value, the chelating efficiency of treated barks is about 1.2–2.2 times that of the raw ones. Moreover, the retention capacity of the Indian treated bark varies from about 42–51 mg/g of dry bark. It is equal to or higher than that of common European species. About 1.8 mols of H3O+ are released, by the treated barks, for every mol of chelated copper ions. Moreover, scanning electron microscopy (SEM) observations show uniform distribution of metal ions throughout the copper saturated bark. Infra red (IR) spectra suggest that the copper ions are chelated to hydroxyl and/or carboxyl functional groups of organic compounds contained in the treated bark. It seems that the interaction of the copper ions with the bark follows a cation exchange mechanism. This hypothesis is supported by elution experiments that allow recovery of about 99% of the contained copper. The retention capacity of the treated bark is almost constant after five cycles of chelation–elution, suggesting that the ‘life time cycle' is sufficiently long for continuous industrial application. The spent copper loaded barks can either be incinerated or pyrolysed. It generates solids containing either ≈80% of CuO or ≈14% of Cu°, respectively. Such materials can be used either in the secondary or primary copper production, thus offering a friendly environmental solution of effluents' treatment. The suggested process can be used as an alternative to the classical technologies for effluent decontamination. It is also efficient for polishing effluents treated by other methods.  相似文献   

19.
Afforestation of agricultural lands has been one of the major land use changes in China in recent decades. To better understand the effect of such land use change on soil quality, we investigated selected soil physical, chemical and microbial properties (0–15 cm depth) in marginal agricultural land and a chronosequence of poplar (Populus euramericana cv. ‘N3016’) plantations (5-, 10-, 15- and 20-years old) in a semi-arid area of Northeast China. Soil bulk density significantly declined after conversion of agricultural lands to poplar plantations. Soil total organic carbon (TOC) and nitrogen (TN) concentrations, microbial biomass C (MBC) and potential N mineralization rate (PNM) decreased initially following afforestation of agricultural lands, and then increased with stand development. However, soil metabolic quotient (qCO2) exhibited a reverse trend. In addition, soil particulate organic matter C (POM-C) and N (POM-N) concentrations showed no significant changes in the first 10 years following afforestation, and then increased with stand age. These findings demonstrated that soil quality declined initially following afforestation of agricultural lands in semi-arid regions, and then recovered with stand development. Following 15 years of afforestation, many soil quality parameters recovered to the values found in agricultural land. We propose that change in soil quality with stand age should be considered in determining optimum rotation length of plantations and best management practices for afforestation programs.  相似文献   

20.
Effect of oxygenated liquid additives on the urea based SNCR process   总被引:1,自引:0,他引:1  
An experimental investigation was performed to study the effect of oxygenated liquid additives, H2O2, C2H5OH, C2H4(OH)2 and C3H5(OH)3 on NOx removal from flue gases by the selective non-catalytic reduction (SNCR) process using urea as a reducing agent. Experiments were performed with a 150 kW pilot scale reactor in which a simulated flue gas was generated by the combustion of methane operating with 6% excess oxygen in flue gases. The desired levels of initial NOx (500 ppm) were achieved by doping the fuel gas with ammonia. Experiments were performed throughout the temperature range of interest, i.e. from 800 to 1200 °C for the investigation of the effects of the process additives on the performance of aqueous urea DeNOx. With H2O2 addition a downward shift of 150 °C in the peak reduction temperature from 1130 to 980 °C was observed during the experimentation, however, the peak reduction efficiency was reduced from 81 to 63% when no additive was used. The gradual addition of C2H5OH up to a molar ratio of 2.0 further impairs the peak NOx reduction efficiency by reducing it to 50% but this is accompanied by a downward shift of 180 °C in the peak reduction temperature. Further exploration using C2H4(OH)2 suggested that a 50% reduction could be attained for all the temperatures higher than 940 °C. The use of C3H5(OH)3 as a secondary additive has a significant effect on the peak reduction efficiency that decreased to 40% the reductions were achievable at a much lower temperature of 800 °C showing a downward shift of 330 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号