首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
/ Tidal marshes have been actively restored in Connecticut for nearly 20 years, but evaluations of these projects are typically based solely on observations of vegetation change. A formerly impounded valley marsh at the Barn Island Wildlife Management Area is a notable exception; previous research at this site has also included assessments of primary productivity, macroinvertebrates, and use by fishes. To determine the effects of marsh restoration on higher trophic levels, we monitored bird use at five sites within the Barn Island complex, including both restoration and reference marshes. Use by summer bird populations within fixed plots was monitored over two years at all sites. Our principal focus was Impoundment One, a previously impounded valley marsh reopened to full tidal exchange in 1982. This restoration site supported a greater abundance of wetland birds than our other sites, indicating that it is at least equivalent to reference marshes within the same system for this ecological function. Moreover, the species richness of birds and their frequency of occurrence at Impoundment One was greater than at 11 other estuarine marshes in southeastern Connecticut surveyed in a related investigation. A second marsh, under restoration for approximately ten years, appears to be developing in a similar fashion. These results complement previous studies on vegetation, macroinvertebrates, and fish use in this system to show that, over time, the reintroduction of tidal flooding can effectively restore important ecological functions to previously impounded tidal marshes.KEY WORDS: Estuarine; Tidal marsh; Wetland birds; Restoration  相似文献   

2.
During the last two decades, the State of Connecticut has restored tidal flow to many impounded salt marshes. One of the first of these and the one most extensively studied is Impoundment One in the Barn Island Wildlife Management Area in Stonington, Connecticut. In 1990, twelve years after the re-establishment of tidal flooding, the density of the marsh snail Melampus bidentatus, the numerically dominant macroinvertebrate of the high marsh, in Impoundment One was about half that in reference marshes below the breached impoundment dike. By 1999 the densities of Melampus above and below the dike were not significantly different, but the shell-free biomass was greater above the dike as a result of the somewhat larger number and size of the snails there. Twenty-one years after the renewal of tidal flooding, three marsh macroinvertebrates (the amphipods Orchestia grillus and Uhlorchestia spartinophila and the mussel Geukensia demissa) were significantly less abundant in the previously impounded marsh than in the reference marshes, whereas another amphipod (Gammarus palustris) was more abundant above the breached dike where conditions appeared to be somewhat wetter. In 1991 the fish assemblage in a mosquito-control ditch in Impoundment One was similar to that in a ditch below the breached dike; however, the common mummichog Fundulus heteroclitus appeared to be less abundant in the restoring marsh. By 1999 the number of mummichogs caught in ditches was significantly greater in Impoundment One than in the reference marsh, but the numbers of mummichogs trapped along the tidal creek were comparable above and below the dike. The results obtained in this study and those of other restoring marshes at Barn Island indicate the full recovery of certain animal populations following the reintroduction of tidal flow to impounded marshes may require up to two or more decades. Furthermore, not only do different species recover at different rates on a single marsh, but the time required for the recovery of a particular species may vary widely from marsh to marsh, often independently of other species.  相似文献   

3.
Macroinvertebrates were examined on an impounded valley marsh in Stonington, Connecticut, that has changed from aTypha-dominated system to one with typical salt-marsh vegetation during 13 years following the reintroduction of tidal exchange. Animal populations on this restored impounded marsh were evaluated by comparing them with populations on a nearby unimpounded valley marsh of roughly the same size. Populations of the high marsh snail,Melampus bidentatus Say, were quantitatively sampled along transects that extended from the water-marsh edge to the upland; those of the ribbed mussel,Geukensia demissa Dillwyn, were sampled in low marsh areas on transects along the banks of creeks and mosquito ditches. The occurrence of other marsh invertebrates also was documented, but their abundance was not measured. The mean density ofMelampus was 332±39.6 SE/m2 on the restored impounded marsh and 712±56.0 SE/m2 on the unimpounded marsh. However, since snails were larger on the restored impounded marsh, the difference in snail biomass was less pronounced than the difference in snail density. MeanMelampus biomass was 4.96±0.52 SE g dry wt/m2 on the restored impounded marsh and 6.96±0.52 SE g dry wt/m2 on the unimpounded marsh. On the two marshes, snail density and biomass varied in relation to plant cover and other factors. The density and biomass ofGeukensia at the edge of the marsh were comparable on the restored impounded and unimpounded marshes. Mean mussel densities ranged from 80 to 240/m2 and mean mussel biomass varied from 24.8–64.8 g dry wt/m2 in different low marsh areas. In contrast, below the impoundment dike, meanGeukensia density was 1100±96.4 SE/m2 and meanGeukensia biomass was 303.6±33.28 SE g dry wt/m2. A consideration of all available evidence leads to the conclusion that the impounded marsh is in an advanced phase of restoration.  相似文献   

4.
Dredged material levees in coastal Louisiana are normally associated with pipeline canals or, more frequently, canals dredged through the wetlands to allow access to drilling locations for mineral extraction. The hydrologic impact on marshes behind the levee is of concern to coastal resource managers because of the potential impact on sediment transport and deposition, and the effect on estuarine organism access to valuable nursery habitat. This study examined the effects of gaps in dredged material levees, compared to continuous levees and natural channel banks, on these two aspects of marsh function. Field studies for sediment deposition were conducted biweekly for a year, and nekton samples were collected in spring and fall. Variation in nekton density among study arears and landscape types was great in part because of the inherent sampling gear issues and in part because of differences in characteristics among areas. Nekton densities were generally greater in natural compared to leveed and gapped landscapes. Differences in landscape type did not explain patterns in sediment deposition. The gaps examined appear to be too restrictive of marsh flooding to provide efficient movements of floodwaters onto the marsh during moderate flooding events. The “trapping” effect of the levees increases sediment deposition during extreme events. Gapping material levees may be an effective method of partially restoring upper marsh connection to nekton, but this method may work best in lower elevation marshes where nekton use is greater.  相似文献   

5.
Since tidal marshes and estuaries cover large areas of the world's coasts and exhibit a very high net primary productivity, they offer a most important food source for an ever increasing world population. The food web of numerous estuaries and coastal waters is based on the primary productivity of coastal marshes that constitute centers of solar energy fixation and an important link in the mineral cycles. The fixed carbon and minerals enterthe water primarily as detritus where a complex food web makes them accessible to commercially important fish and benthic communities. With the launch of LANDSAT, NOAA-2, and Skylab, relatively high resolution spacecraft data became available for mapping and inventorying tidal marshes and their productivity on a global scale. Upwelling regions that attract large fish populations as well as other coastal water properties relating to the presence of finfish, Crustacea, and shellfish could be identified and observed. Using multispectral analysis techniques, classification accuracies greater than 80 percent have been obtained for most marsh plant species, and greater than 90 percent for key types such asSpartina alterniflora, which is the primary producer in large tide marshes of the coastal eastern USA. The capacity of remote sensors on spacecraft such as NOAA-2, LANDSAT, and Skylab to assess coastal food resources on a global scale is discussed from the point of view of resolution, classification accuracy, and cost effectiveness.  相似文献   

6.
Data are presented on the vegetation dynamics of two impounded marshes along the Indian River Lagoon, in east-central Florida, USA. Vegetation in one of the marshes (IRC 12) was totally eliminated by overflooding and by hypersaline conditions (salinities over 100 ppt) that developed there in 1979 after the culvert connecting the marsh with the lagoon was closed. Over 20% recovery of the herbaceous halophytesSalicornia virginica, S. bigelovii, andBatis maritima was observed at that site after the culvert was reopened in 1982, but total cover in the marsh remains well below the original 75%. No recovery of mangroves was observed at this site. The second site (SLC 24), while remaining isolated from the lagoon during much of the study, did not suffer the complete elimination of vegetation experienced at the first site. At this location, mangroves increased in cover and frequency with a concomitant decrease in herbaceous halophytes. Considerable damage to the vegetation was evident at IRC 12 when the impoundment was closed and flooded for mosquito control in 1986. Although the damage was temporary, its occurrence emphasizes the need of planning and constant monitoring and adjustment of management details as conditions within particular marshes change. Storms and hurricanes may be important in promoting a replacement of black mangroves by red mangroves in closed impoundments because the former cannot tolerate pneumatophore submergence for long periods of time. University of Florida-IFAS Journal Series R-00521.  相似文献   

7.
Marsh creation is currently receiving wide attention in the United States as an important tool for mitigating the impacts of development in coastal wetlands. The perception that there is no net loss in valuable coastal wetlands when development is mitigated by the creation of man-made marshes can have a substantial impact on the permitting and decision-making processes. The effective result may be the trading of natural salt marshes for man-made marshes.Techniques for marsh creation were developed by the US Army Corps of Engineers to enhance and stabilize dredge spoil materials. Most research sponsored by the Corps has been directed at determining whether these goals have been accomplished. A survey of the research indicates that there is insufficient evidence to conclude that man-made marshes function like natural salt marshes or provide the important values of natural marshes. It is necessary, therefore, for decision-makers to understand the limitations of present knowledge about man-made marshes, realistically evaluate the trade-offs involved, and relegate mitigation to its proper role in the permitting process—post facto conditions imposed on developments that clearly meet state qualifications and policies.  相似文献   

8.
Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.  相似文献   

9.
Mosquito control ditches designed to increase tidal circulation are widely used as a physical control alternative to insecticidal applications The impact of such ditching on Pacific Coast marshlands was largely unknown before this five-year study of impact in two types of San Francisco Bay salt marshes, aSalicornia virginica (pickleweed) monoculure and a mixed vegetation marsh Results of our studies suggest that ditches cause less environmental disturbance than insecticidal applications The article describes the following environmental consequences of ditching for mosquito control: increased tidal flushing of soils occurs adjacent to ditches compared with that in the open marsh, thereby reducing ground water and soil surface salinities and water table height; primary productivity ofS. virginica, as determined by both the harvest method and infrared photographic analysis, is higher directly adjacent to ditches than in the open marsh, distribution of selected arthropod populations is similar at ditches and natural channels, although arthropod community response differs seasonally; aquatic invertebrate biomass is similar within ditched and natural ponds, but diversity is lower in ditched habitats, ditching increases fish diversity and density by improving fish access from tidal channels; ditches provide additional salt marsh song sparrow habitat, although ditches are less preferred than natural channels or sloughs. Management criteria can be used to design ditches that provide effective mosquito control and reduced environmental impact  相似文献   

10.
The effect of bridge shading on estuarine marsh food webs was assessed by comparing benthic invertebrate communities beneath seven highway bridges with marshes outside of bridge-affected areas (reference marshes). We used light attenuation and height–width ratio (HW ratio), which takes into account the two main bridge characteristics that determine the degree of shading, to quantify the impact of shading on invertebrate communities. Low bridges, with HW ratio <0.7 and light attenuation greater than 85–90%, had benthic invertebrate densities and diversity that were significantly lower than reference marshes. Density of benthic invertebrates at low bridges was 25–52% (29,685–72,920 organisms/m2) of densities measured in adjacent reference marshes (119,329–173,351 organisms/m2). Likewise, there were fewer taxa under low bridges (5.8/11.35 cm2 core) as compared to the reference marshes (9.0/11.35 cm2 core). Density of numerically dominant taxa (e.g., oligochaetes and nematodes) as well as surface- and subsurface deposit feeders also were reduced under low bridges. Decreased invertebrate density, diversity, dominant taxa, and alterations of trophic feeding groups beneath low bridges was correlated with diminished above- and below-ground macrophyte biomass that presumably resulted in fewer food resources and available refuges from predators. With a greater knowledge of bridge shading effects, bridge construction and design may be improved to reduce the impacts on estuarine benthic invertebrate communities and overall ecosystem structure and function.  相似文献   

11.
A conceptual mathematical model has recently been devised to assist environmental managers in predicting the impact on coastal marsh areas of long-term changes in water levels. The model considers such impact solely in terms of the geometry of the confining basin, the change in ambient water level, and the maximum depth for which bottom-rooted emergent vegetation is present. This model is applied to 17 shoreline marshes of various shapes in the Georgian Bay/North Channel region of the Great Lakes.Model outputs of predicted maximum and minimum marsh area subsequent to changes in long-term levels are compared to marsh areas measured from available historical air photos dating from 1935 to 1985. The results of such comparisons indicate that such a geometric model, despite its neglect of the biological complexities of marsh ecology, can serve as a valuable tool for assessing the range of impacts of both natural and man-made changes in long-term ambient water levels on shoreline marshes.  相似文献   

12.
Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seasonal relationships between denitrification enzyme activity (DEA) in salt marshes of Narragansett Bay, Rhode Island, and watershed N loadings, land use, and terrestrial hydric soils. In a manipulative experiment, the effect of nutrient enrichment on DEA was examined in a saltmeadow cordgrass [Spartina patens (Aiton) Muhl.] marsh. In the high marsh, DEA significantly (p < 0.05) increased with watershed N loadings and decreased with the percent of hydric soils in a 200-m terrestrial buffer. In the low marsh, we found no significant relationships between DEA and watershed N loadings, residential land development, or terrestrial hydric soils. In the manipulation experiment, we measured increased DEA in N-amended treatments, but no effect in the P-amended treatments. The positive relationships between N loading and high marsh DEA support the hypothesis that salt marshes may be important buffers between the terrestrial landscape and estuaries, preventing the movement of land-derived N into coastal waters. The negative relationships between marsh DEA and the percent of hydric soils in the adjacent watershed illustrate the importance of natural buffers within the terrestrial landscape. Denitrification enzyme activity appears to be a useful index for comparing relative N exposure and the potential denitrification activity of coastal salt marshes.  相似文献   

13.
The method of flow analysis, which is similar to economic input-output analysis, is presented as a means of making flow models of ecological systems more useful to environmental managers. This paper considers as an illustration the extent to which nitrogen fertilizer added toSpartina salt marsh sediments can enhance shellfish growth. Nitrogen flow models of both the Barataria Bay salt marsh complex of coastal Louisiana and the Sippewissett Marsh of western Cape Cod are analyzed. The analysis shows the transfer of added nitrogen to shellfish growth viaSpartina growth, decomposition, and detrital feeding to be considerably less efficient than its transfer toSpartina growth itself. These results are similar for both marsh systems, despite their great physical differences and despite the inclusion of considerably more microbial processing of nitrogen in the Barataria Bay model than in the Sippewissett models. The results suggest that the most efficient mechanism by which added nitrogen could enhance shellfish growth in salt marshes may have to bypass the route through theSpartina life cycle.  相似文献   

14.
We inventoried wetland impoundments in the Louisiana, USA, coastal zone from the late 1900s to 1985. Historically, impoundment of wetlands for reclamation resulted in direct wetland loss after levees (dikes) failed and the impounded area was permanently flooded, reverting not to wetland, but to open-water habitat. A current management approach is to surround wetlands by levees and water control structures, a practice termed semi-impoundment marsh management. The purpose of this semi-impoundment is to retard saltwater intrusion and reduce water level fluctuations in an attempt to reduce wetland loss, which is a serious problem in coastal Louisiana. In order to quantify the total impounded area, we used historic data and high-altitude infrared photography to map coastal impoundments. Our goal was to produce a documented inventory of wetlands intentionally impounded by levees in the coastal zone of Louisiana in order to provide a benchmark for further research. We inventoried 370,658 ha within the coastal zone that had been intentionally impounded before 1985. This area is equal to about 30% of the total wetland area in the coastal zone. Of that total area, approximately 12% (43,000 ha) is no longer impounded (i.e., failed impoundments; levees no longer exist or only remnants remain). Of the 328,000 ha still impounded, about 65% (214,000 ha) is developed (agriculture, aquaculture, urban and industrial development, and contained spoil). The remaining 35% (114,000 ha) of impoundments are in an undeveloped state (wetland or openwater habitat). In December 1985, approximately 50% (78,000 ha) of the undeveloped and failed impoundments were open-water habitat. This inventory will allow researchers to monitor future change in land-water ratios that occur within impounded wetlands and thus to assess the utility of coastal wetland management using impoundments.  相似文献   

15.
Returning canal spoil banks into canals, or backfilling, is used in Louisiana marshes to mitigate damage caused by dredging for oil and gas extraction. We evaluated 33 canals backfilled through July 1984 to assess the success of habitat restoration. We determined restoration success by examining canal depth, vegetation recolonization, and regraded spoil bank soils after backfilling. Restoration success depended on: marsh type, canal location, canal age, marsh soil characteristics, the presence or absence of a plug at the canal mouth, whether mitigation was on- or off-site, and dredge operator performance.Backfilling reduced median canal depth from 2.4 to 1.1 m, restored marsh vegetation on the backfilled spoil bank, but did not restore emergent marsh vegetation in the canal because of the lack of sufficient spoil material to fill the canal and time. Median percentage of cover of marsh vegetation on the canal spoil banks was 51.6%. Median percentage of cover in the canal was 0.7%. The organic matter and water content of spoil bank soils were restored to values intermediate between spoil bank levels and predredging marsh conditions.The average percentage of cover of marsh vegetation on backfilled spoil banks was highest in intermediate marshes (68.6%) and lowest in fresh (34.7%) and salt marshes (33.9%). Average canal depth was greatest in intermediate marshes (1.50 m) and least in fresh marshes (0.85 m). Canals backfilled in the Chenier Plain of western Louisiana were shallower (average depth = 0.61 m) than in the eastern Deltaic Plain (mean depth range = 1.08 to 1.30 m), probably because of differences in sediment type, lower subsidence rate, and lower tidal exchange in the Chenier Plain. Canals backfilled in marshes with more organic soils were deeper, probably as a result of greater loss of spoil volume caused by oxidation of soil organic matter. Canals ten or more years old at the time of backfilling had shallower depths after backfilling. Depths varied widely among canals backfilled within ten years of dredging. Canal size showed no relationship to canal depth or amount of vegetation reestablished. Plugged canals contained more marsh reestablished in the canal and much greater chance of colonization by submerged aquatic vegetation compared with unplugged canals. Dredge operator skill was important in leveling spoil banks to allow vegetation reestablishment. Wide variation in dredge performance led to differing success of vegetation restoration.Complete reestablishment of the vegetation was not a necessary condition for successful restoration. In addition to providing vegetation reestablishment, backfilling canals resulted in shallow water areas with higher habitat value for benthos, fish, and waterfowl than unfilled canals. Spoil bank removal also may help restore water flow patterns over the marsh surface. Increased backfilling for wetland mitigation and restoration is recommended.  相似文献   

16.
Sediments impounded within flood control reservoirs are potentially important archives of environmental and geomorphic processes occurring within drainage basins. The concentrations of select sediment-associated trace elements were assessed within the impoundment of Grenada Lake, a relatively large flood control reservoir in Mississippi with a history of contaminant bioaccumulation in fish. The post-construction sediments (after 1954) are discriminated from the pre-construction sediments (before 1954) based on depth variations in sediment texture and 137Cs emissions. The concentrations of select trace elements of the post-1954 sediments all are statistically greater than the pre-1954 sediments, and these same sediments also are enriched in clay. Once these concentrations are normalized by clay content, all trace elements in the post-1954 sediments are lower in concentration than the pre-1954 normalized sediments. Moreover, the trace elements when normalized by clay or Al content show virtually no change vertically (over time) within the reservoir impoundment. This suggests that the sources of these sediment-associated trace elements within Grenada Lake, whether natural or anthropogenic, have not changed appreciably over the lifespan of the reservoir and that the degradation of sedimentologic and ecologic indices within the lake are due to the sequestration of clay or clay-sized materials.  相似文献   

17.
The high degree of physical disturbance associated with conventional response options to oil spills in wetlands is driving the investigation of alternative cleanup methodologies. In March 1995, a spill of gas condensate in a brackish marsh at Rockefeller Wildlife Refuge in southwestern Louisiana was remediated through the use of in situ burning. An assessment of vegetation recovery was initiated in three treatment marshes: (1) oil-impacted and burned, (2) oil impacted and unburned, and (3) a nonoiled unburned reference. We compared percent cover, stem density, and biomass in the treatment marshes to define ecological recovery of the marsh vegetation and soil hydrocarbon content to determine the efficacy of in situ burning as a cleanup technique. Burning led to a rapid decrease in soil hydrocarbon concentrations in the impacted-and-burned marsh to background levels by the end of the first growing season. Although a management fire accidentally burned the oil-impacted-and-unburned and reference marshes in December 1995, stem density, live biomass, and total percent cover values in the oil-impacted-and-burned marsh were equivalent to those in the other treatment marshes after three years. In addition, plant community composition within the oil-impacted-and-burned marsh was similar to the codominant mix of the grasses Distichlis spicata (salt grass) and Spartina patens (wire grass) characteristic of the surrounding marsh after the same time period. Rapid recovery of the oil-impacted-and-unburned marsh was likely due to lower initial hydrocarbon exposure. Water levels inundating the soil surface of this grass-dominated marsh and the timing of the in situ burn early in the growing season were important factors contributing to the rapid recovery of this wetland. The results of this in situ burn evaluation support the conclusion that burning, under the proper conditions, can be relied upon as an effective cleanup response to hydrocarbon spills in herbaceous wetlands.  相似文献   

18.
A computerized geographic information system with site-specific change-detection capabilities was developed to document amounts, rates, locations, and sequences of loss of coastal marsh to open water in Barataria Basin, Louisiana, USA. Land-water interpretations based on 1945, 1956, 1969, and 1980 aerial photographs were used as input, and a modified version of the Earth Resources Laboratory Applications Software developed by the National Aeronautics and Space Administration was used as a spatial data base management system. Analysis of these data sets indicates that rates of marsh loss have increased from 0.36% per year in the 1945–56 period, to 1.03% per year in 1956–69, and to 1.96% per year in 1969–80. The patterns of marsh loss indicate that the combination of processes causing degradation of the marsh surface does not affect all areas uniformly. Marsh loss rates have been highest where freshwater marshes have been subject to saltwater intrusion. The increase in the wetland loss rates corresponds to accelerated rates of subsidence and canal dredging and to a cumulative increase in the area of canals and spoil deposits.  相似文献   

19.
ABSTRACT: Completion of a 1270 acre recreational impoundment (Legend Lake) in the glacial sands of Menominee County, Wisconsin, produced geochemical and hydrologic alterations in some nearby natural lakes. The impoundment was produced by the construction of three dams, one of which proved to be temporary, connecting 9 natural lakes and ponds of 383 acres with 951 acres of flooded lands. Water levels were raised 3–15 feet within the impounded area. Much of the flooded area was peat rich wetland associated with the prior drainage. Water depths are less than 15 feet in 70% of the impoundment. Three seepage lakes, located less than 1/2 mile from the impoundment, experienced shoreline flooding, shoreline and soil erosion, some tree kills, and increased turbidity. These lakes also experienced concentration increases in several chemical constituents which indicate an influx of impoundment water through a regional alternation in the groundwater flow paths. The three lakes were connected by canals, and a 2.3 cfs gravity drain with an auxiliary pumping station was built to return excess water to the outflow of the impoundment. Future projects of this type would benefit from a more extensive hydrologic and geochemical analysis prior to initiation. Had environmental assessments been required at the time of this development, as they now are in Wisconsin for similar projects, some of the problems encountered might have been alleviated.  相似文献   

20.
Ten intertidal salt marshes along the Rhode Island coast were sampled and compared in terms of the relative standing crop and height of tallSpartina alterniflora, density of shoots, seed production and size, fish populations, and the abundance of grass shrimp, fiddler crabs, insects, and birds. The marshes ranged from 0.49 to 52.61 hectares (1.2 to 130 acres) and included fringe marsh in dense urban developments as well as unspoiled waterfowl preserves in rural isolation. Large variation in most parameters made it impossible to separate the sites with statistical significance using either univariate or multivariate techniques. Moreover, there was little meaningful intercorrelation among the parameters. Although more intensive sampling might make it possible to separate individual marshes with statistical rigor, these results suggest that the necessary effort may be too great to allow comparative field sampling to play a practical part in wetlands evaluation programs. The results also indicate that there is little, if any, correlation between visual esthetic perceptions of a marsh and its ecological characteristics. This work suggests that the development of ecological rating systems will not provide a reliable tool for the management of coastal wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号