首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究MFC(微生物燃料电池)产生电能活化PDS(过硫酸盐)对偶氮染料的降解能力,以MO(甲基橙)为目标污染物,探讨pH、c(PDS)、初始c(MO)、无机阴离子等对MO降解的影响及降解机理.结果表明:①当pH为3~5时,MO降解率随pH降低而升高;当pH低于3时,MO降解率随pH的降低而降低;MO降解率随初始c(MO)的增大而降低.当c(PDS)为1~2 mmol/L时,MO降解率随c(PDS)增加而增大;当c(PDS)超过2 mmol/L后呈减小趋势.②最佳反应条件[pH为3、初始c(MO)为0.10 mmol/L、c(PDS)为2 mmol/L]下,反应4 h后MO降解率可达86.5%.③无机阴离子HCO3-、NO3-、CO32-对MO降解存在抑制作用,当阴离子投加量为10 mmol/L时,降解率分别为64.2%、68.8%、76.1%,而Cl-对MO降解无显著影响.④淬灭试验表明,体系的主要活性物质为SO4-·及少量·OH.⑤通过紫外-可见光谱扫描,依据MO结构与特征吸收峰的关系,推测MO降解途径,即MO发色基团偶氮双键断裂,生成含苯环类中间产物,最终矿化为CO2和H2O.研究显示,MFC能有效活化PDS产生SO4-·,对偶氮染料有较好的降解和矿化效果.   相似文献   

2.
采用电子束辐照水溶液的方法产生水合电子(eaq-),研究了eaq-与对叔丁基酚(4-t-BP)的反应,结果表明还原性的eaq-不能降解4-t-BP.同时,采用254nm紫外光辐照H2O2来产生羟基自由基(·OH),研究了UV//H2O2体系对4-t-BP的降解效果,考察了4-t-BP初始浓度,H2O2的添加浓度,溶液初始pH值等因素对反应的影响,结果表明4-t-BP初始浓度越低,H2O2的浓度越高,则越有利于反应的进行;溶液pH=6时是反应的最佳pH值.采用HPLC结合GC-MS的分析方法对反应的中间产物进行了定性分析,得出对叔丁基邻苯二酚,对叔丁基酚二聚体和对苯二酚等3种主要中间产物,归纳总结了4-t-BP与·OH的反应路径.  相似文献   

3.
为有效解决饮用水中卤代乙酸(HAAs)污染问题,选取水中典型HAAs一氯乙酸(MCAA)作为目标污染物,系统研究了高强UV/SO32-体系对其降解效能及影响因素.结果表明,高强UV/SO32-体系可高效降解MCAA,50s内初始浓度为50 μmol/L的MCAA可被完全降解.与已报导的还原法降解MCAA的文献相比,本研究中MCAA降解速率提高了1000倍以上.提高SO32-浓度、溶液初始pH以及紫外光强均有利于体系中MCAA降解率的提高.水中共存物质研究表明,NH4+可促进MCAA降解,而NO3-、HCO3-、NOM均会抑制MCAA降解,其中,HCO3-影响较小.  相似文献   

4.
采用新型磁性催化材料尖晶石型铁酸铜(CuFe2O4)活化过硫酸盐(PMS)降解氧杂蒽类染料罗丹明B(RhB),考察PMS浓度、CuFe2O4投加量、pH值和水中常见离子对RhB降解的影响.结果表明,当RhB、PMS、CuFe2O4初始浓度分别为5 μmol/L、0.1mmol/L、0.1g/L时,在中性条件下反应30min后RhB去除率可达88.87%.其中,Cl-和HCO3-对RhB的降解无显著影响,而H2PO42-、C2O42-及腐殖酸明显抑制RhB的降解.自由基鉴定实验表明,在中性及弱碱性条件下SO4-和·OH是CuFe2O4/PMS体系降解RhB的主要自由基.研究发现随着RhB的降解,溶液逐渐褪色并伴随着甲酸根、乙酸根、草酸根和铵根离子的生成,原因在于SO4-和·OH可以破坏RhB分子的发色基团,使苯环开环和氮原子脱落,形成相应的降解产物.矿化实验表明0.2mmol/L的RhB在CuFe2O4/PMS体系中反应10h后,矿化率可达62%.催化剂的重复利用实验表明制备的CuFe2O4具有良好回收再利用能力.  相似文献   

5.
采用分步热分解法制备了NC-PC(三维多孔碳材料)锚定的微量Fe基催化剂,用于活化过一硫酸盐(PMS)氧化降解水中2,4-二氯苯氧乙酸(2,4-D).采用透射电子显微镜(TEM)、高精度比表面积仪(BET)、X射线光电子能谱分析(XPS)和电感耦合等离子体发射光谱分析(ICP)对催化剂进行表征.考察了不同金属、制备方法、催化剂投加量、PMS投加量、初始pH值以及水中不同阴离子(Cl-、NO3-、HCO3-)对2,4-D降解的影响.结果表明,通过热分解法合成的Fe-NC-PC对2,4-D具有更好的降解效果,当2,4-D初始浓度为0.1mmol/L,初始pH=3.4,催化剂投加量0.15g/L,PMS浓度0.7mmol/L时,反应20min内2,4-D的去除率可达91%.随着催化剂投加量、PMS投加量的提高,2,4-D的降解效果提高;随着初始pH值的提高,2,4-D的降解效率逐渐降低;水中不同阴离子(Cl-、NO3-、HCO3-)和腐殖酸(HA)对2,4-D的降解有轻微的抑制作用.通过自由基淬灭实验、EPR测试以及XPS分析了反应的主要活性物种和反应机理,发现材料制备过程中形成的Fe-Nx是主要的反应活性位,能够有效的活化PMS降解水中2,4-D,1O2在2,4-D的降解过程中起到主要作用.  相似文献   

6.
以FeCl3为原料,尿素为沉淀剂,抗坏血酸为还原剂,聚乙烯吡咯烷酮为结构导向剂,纳米碳粉为模板,水热法制备了一种新型α-Fe2O3砂芯微球.通过透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)和比表面积及孔径分析(BET/BJH)等手段对其结构和性能进行表征.结果表明新型α-Fe2O3砂芯微球尺寸均匀,直径为50μm左右,是由直径40nm"米粒状"纯相α-Fe2O3自聚而成,SBET为25.45~32.46m2/g.在紫外(UV,高压汞灯)辐射下能够活化过硫酸盐(PMS)产生强氧化性的硫酸根自由基(SO4-·).40min内AO7的降解率可达98.6%,采用电子自旋共振(ESR)技术鉴定了主要的活性氧自由基(ROS)为SO4-·.此外发现PMS作为一种电子捕获剂,能有效抑制光生电子(eCB-)和空穴(hVB+)的复合,AO7能直接和hVB+、SO4-·和羟基自由基(OH·)反应而迅速被氧化降解;α-Fe2O3回收重复使用10次,仍可以达到80%以上的去除率.通过考察α-Fe2O3投加量、PMS浓度、初始pH值、阴离子和初始AO7浓度等不同条件对AO7降解率的影响,发现在初始pH值为7.0,α-Fe2O3的投加量为1.0g/L,PMS浓度为0.3g/L时,40min内对AO7的降解率可以达到99%以上;阴离子CO32-、NO3-以及Cl-对该体系均有不同程度的促进作用.  相似文献   

7.
研究紫外(UV)增强NaOCl氧化泛影酸钠(Sodium Diatrizoate,DTZ)的效果,考察了NaOCl浓度和初始溶液pH对该过程的影响,分析主要活性物种及其贡献,并探讨DTZ的氧化路径和氧化产物毒性的变化.结果表明,UV/NaOCl能够显著提高DTZ的氧化效果,初始pH=6.5,40min,DTZ的降解率达到100%.氧化过程遵循准一级反应动力学,k为4.999×10-2 min-1,分别是NaOCl氧化(k=7.517×10-3 min-1)和UV (k=1.451×10-2 min-1)的6.65倍和3.45倍.自由基抑制实验表明,与HO·和Cl·相比,二级氯自由基ClO·和Cl2-·是UV/NaOCl氧化DTZ的主要活性物种.NaOCl浓度在50~150μmol·L-1范围升高,DTZ的降解率增加;初始pH对DTZ降解的影响较为显著,pH=6.50降解效果最好,ClO·和C...  相似文献   

8.
二价铁催化过碳酸钠处理水中乙苯   总被引:1,自引:0,他引:1  
采用Fe(II)催化过碳酸钠(SPC)体系处理水溶液中的乙苯(EB),考察c(SPC)、c(Fe(II))、阴离子浓度、天然有机物(NOM)以及溶液初始pH值对EB降解效果的影响,并确定EB降解过程中起主导作用的自由基.结果表明,对于浓度为1mmol/L的EB溶液,c(SPC)、c(Fe(II))均为12mmol/L时,20min内EB可被完全去除; Cl-、HCO3-、NOM的存在均会抑制EB降解,SO42-和NO3-对EB降解无影响;溶液初始pH值(pH3.00~11.00) 越高,EB去除率越低,但当pH=9时,降解效果仍很显著,表明该体系能够在较宽pH值范围内高效降解水溶液中EB;自由基探针试验证实体系中存在·OH和O2·-,自由基清扫试验表明·OH对EB降解起主导作用.  相似文献   

9.
为研究Cu/O2/HA(HA为盐酸羟胺)体系的氧化能力,以MO(甲基橙)为目标物,对该体系生成·OH(羟基自由基)的过程及机理进行了探讨,并分别考察了HA投加量(以c计)、pH、Cu(Ⅱ)投加量(以c计)和O2通量对MO降解的影响. 结果表明:Cu能够有效催化HA与O2的反应,生成大量H2O2,并进一步生成·OH,有效降解MO. HA投加量越高,MO降解率越高,但过高的HA投加量在初始阶段会对MO的降解形成抑制,最佳HA投加量为3 mmol/L;受到HA质子化的影响,反应的最适pH约为5.5;由于Cu(OH)2不利于催化HA与O2的反应,最佳Cu(Ⅱ)投加量为20 μmol/L;O2通量对MO的降解影响较小,最佳O2通量为0.15 L/min;Cu/O2/HA体系降解MO的初始阶段符合一级动力学模型. 研究显示,Cu/O2/HA体系具有良好的氧化能力,能够有效降解水中的MO,最佳反应条件下MO降解率达86.5%.   相似文献   

10.
研究高效还原技术是去除废水中Cr(VI)的有效手段,本研究提出了一种新颖有前景的基于紫外(UV)活化甲酸(HCOOH)产还原性二氧化碳阴离子自由基(CO2•;-)去除Cr(VI)的方法.通过对比UV、HCOOH、UV/HCOOH三种体系对Cr(VI)还原效率和电子自旋共振(EPR)对体系中自由基的检测研究了其活化原理和还原机制.结果表明UV能显著活化HCOOH产生CO2•-(αH=19.08G,αN=15.86G,g=2.0036).此外,试验考察了主要影响因素对Cr(VI)去除效果的影响,包括初始Cr(VI)浓度、甲酸投加量、初始pH值、反应温度、有机污染物以及水中常见阴离子.结果显示当甲酸浓度为40mmol/L,Cr(VI)初始浓度为10mg/L,反应时间在60min内,UV/HCOOH体系对Cr(VI)的去除率能达到100%.在酸性条件下(pH≤3.5)能显著促进Cr(VI)的还原,且Cr(VI)去除效率随着初始HCOOH浓度和反应温度升高而增加.进一步研究表明,该体系下NO3-对Cr(VI)的还原有着显著的促进作用,而Cl-、HCO3-和对硝基苯酚(pNP)则有抑制作用.不同温度下Cr(VI)去除率与时间关系的拟合结果表明,当反应时间t³;40min,UV/HCOOH体系去除Cr(VI)过程遵循准一级反应动力学,根据不同温度下对应的反应速率常数k,结合阿伦尼乌斯方程,计算求得准一级反应的活化能为15.9kJ/mol.  相似文献   

11.
双酚A(BPA)是一种典型的内分泌干扰物(EDCs),对人体和生物都存在毒性风险.高级氧化技术(AOPs)因其能产生大量的活性物种来降解污染物,成为目前处理环境中污染物最常用的方法之一.本研究采用紫外联合过氧化镁(UV/MgO2)体系降解水体中的BPA,并探究了该体系对BPA的降解机制.实验结果表明,UV/MgO2体系能够高效降解水体中的BPA,在1 h内降解率可达98%,体系降解的反应速率对比单独MgO2和单独UV降解分别提高了约48倍和18倍.数据显示在0.5 g·L-1 MgO2浓度下BPA的降解速率最快.水体的pH、不同水体及水体中的不同离子对UV/MO2体系降解BPA具有一定的影响作用(其中,SO42-、HCO3-和HA有明显抑制作用),总体来说,体系的适应性较强.通过电子自旋共振(EPR)检测得知体系中存在·OH、1O2  相似文献   

12.
采用化学浸渍法将Fe@Fe2O3纳米线负载在活性炭纤维/泡沫镍上组成Fe@Fe2O3/ACF/Ni复合阴极,以钛基铂(Pt/Ti)为阳极,考察载铁量、初始pH值和不同电化学体系对除藻效果的影响,探究无供氧条件下Pt/Ti-Fe@Fe2O3/ACF/Ni电化学体系除藻的效能;基于·OH间接检测、铁离子浓度、H2O2浓度及pH值的分析和·O2-的检测研究Pt/Ti-Fe@Fe2O3/ACF/Ni中性电化学体系反应机制.结果表明,当制备阴极阶段投加0.03g FeCl3×6H2O,初始藻浓度为0.7×109~0.8×109个/L,电流密度为75mA/cm2,初始pH6.2时,电解60min,该体系除藻率可达到92.3%.在Pt/Ti-Fe@Fe2O3/ACF/Ni电化学体系中,Fe@Fe2O3/ACF/Ni阴极可通过电化学反应产生大量·OH和·O2-,使藻细胞破裂死亡;该体系除藻的主要机理是非均相电Fenton反应.  相似文献   

13.
采用化学浸渍法将Fe@Fe2O3纳米线负载在活性炭纤维/泡沫镍上组成Fe@Fe2O3/ACF/Ni复合阴极,以钛基铂(Pt/Ti)为阳极,考察载铁量、初始pH值和不同电化学体系对除藻效果的影响,探究无供氧条件下Pt/Ti-Fe@Fe2O3/ACF/Ni电化学体系除藻的效能;基于·OH间接检测、铁离子浓度、H2O2浓度及pH值的分析和·O2-的检测研究Pt/Ti-Fe@Fe2O3/ACF/Ni中性电化学体系反应机制.结果表明,当制备阴极阶段投加0.03g FeCl3×6H2O,初始藻浓度为0.7×109~0.8×109个/L,电流密度为75mA/cm2,初始pH6.2时,电解60min,该体系除藻率可达到92.3%.在Pt/Ti-Fe@Fe2O3/ACF/Ni电化学体系中,Fe@Fe2O3/ACF/Ni阴极可通过电化学反应产生大量·OH和·O2-,使藻细胞破裂死亡;该体系除藻的主要机理是非均相电Fenton反应.  相似文献   

14.
张事成  李思敏  朱佳 《环境工程》2022,40(10):40-48
采用水热-煅烧法合成了CuO/g-C3N4催化剂,利用X射线衍射仪、扫描电镜、红外吸收光谱和X射线能谱对其基本性能进行表征,进一步研究了不同参数下CuO/g-C3N4活化过二硫酸盐(PDS)体系对有机污染物(甲基橙,MO)的去除效果。活化实验结果表明:CuO/g-C3N4对活化PDS降解MO具有明显效果。优化实验结果表明:在催化剂的水热时间为8 h,CuO复合比为10%,反应体系中催化剂初始浓度为1.00 g/L,PDS初始浓度为4 mmol/L,pH=3的条件下,30 min内MO的降解率高达99.20%。机理分析表明催化剂表面的硫酸根自由基(SO4-·)和羟基自由基(·OH)是降解MO的主要活性物质,并且有少量超氧自由基(·O2-)参与其中。对该催化剂进行5次重复实验后,活化PDS对MO降解率仍保持在90%以上,表明该催化剂有较好的稳定性。  相似文献   

15.
采用HSO3-强化Fe3+/S2O82-降解水中双氯芬酸(DCF),考察了溶液初始pH值,Fe3+、HSO3-和S2O82-用量,溶解氧对HSO3-/Fe3+/S2O82-体系降解DCF的影响;通过自由基淬灭实验,识别了体系中主要的活性物种;最后,探讨了DCF在该体系中的降解产物和转化路径.结果表明:HSO3-可以明显促进Fe3+/S2O82-对DCF的降解,初始pH 4.0时,DCF降解效果最佳.DCF的降解速率随Fe3+或S2O82-浓度的增大而增大;适量增加HSO3-浓度可提高DCF的降解,而过量的HSO3-对DCF降解有一定抑制作用.在通入氮气条件下,DCF去除率仅下降10.4%,无明显的抑制作用.自由基抑制实验表明,该体系含有SO4·-、HO·和SO5·-3种活性自由基,其对DCF降解的贡献率分别为83.0%、12.8%和4.3%.在HSO3-/Fe3+/S2O82-降解DCF的反应中共检测出4种产物,据此提出DCF可能的转化路径为:羟基化、脱羧基、脱水和甲酰化反应.  相似文献   

16.
为深度处理偶氮染料废水,以甲基橙(MO)为目标污染物,研究了亚硫酸盐活化过硫酸盐产活性物种的新型高级氧化处理方法,并对活化机制、氧化机理及动力学理论进行分析.通过对SO32-/S2O82-,S2O82-,SO32-3种体系进行降解对比和ESR等技术表征对比,发现亚硫酸盐能显著活化过硫酸根产生硫酸根自由基,其能氧化破坏MO偶氮双键形成的共轭体系,有较好的脱色降解效果.考察了亚硫酸盐和过硫酸盐摩尔比、过硫酸盐投加量、初始pH值对降解效果的影响,结果表明当初始pH值为3.0,摩尔比1:1,投加量为20.0mmol/L、反应时间在300min下对MO降解率能达到96.1%,进一步发现该体系对初始pH值的适应范围较广(3.0~11.0).基于Box-behnken设计的响应面模拟和方差分析得到了可达显著水平的二次响应曲面模型,影响因子对MO降解的贡献排序为:过硫酸盐投加量 > 初始pH值 > 摩尔比.初始MO浓度动力学分析发现不同初始浓度下对MO的降解过程遵循准二级反应动力学规律,反应动力学常数从1.8212×10-4~2.4649×10-4min-1.另一方面发现升高反应温度可以促进体系对MO的降解,根据不同温度下活化过程的反应速率常数的阿累尼乌斯准二级反应的活化能计算结果(Ea=44.9kJ/mol),发现其相比常规金属活化方式较低,因此该体系对有毒有害的工业有机废水处理有潜在的商业应用价值.  相似文献   

17.
采用碳酸氢盐活化过氧化氢(BAP)类芬顿体系去除水中四环素污染物,研究了不同反应条件对四环素去除效果的影响,并探究了碳酸氢盐活化过氧化氢降解四环素的机理.结果表明,BAP体系的pH适应范围较宽;HCO3-浓度和H2O2浓度的增加可加速BAP体系高效降解水中四环素的反应;温度显著提升了BAP体系中四环素的去除速率;水中共存阴离子(Cl-、NO3-、SO42-)对BAP降解TC的影响不显著;当水中共存溶解性有机质浓度超过20 mg·L-1时,对BAP降解TC的抑制作用明显.在不同的影响因素实验中,最优反应条件的TC去除率均保持在85%以上.自由基淬灭实验和电子顺磁共振鉴定结果表明体系中产生了CO3·-、HO·、O2·-和1O2,其中CO3·-起主要作用.在最优反应条...  相似文献   

18.
刘霞  樊金红 《中国环境科学》2018,38(5):1704-1711
采用乙二胺二琥珀酸(EDDS)强化Fe0-Al0体系还原水溶液中的O2产生H2O2和·OH等活性氧(ROS)的绿色高级氧化工艺,以4-氯酚(4-CP)模拟废水为研究对象,考察了溶液的初始pH值、铁铝的质量比、EDDS投加量和4-CP的初始浓度等因素对4-CP降解的影响.采用电子自旋共振(ESR)法、苯甲酸捕捉法以及4-CP的降解产物等证实了ROS的产生及4-CP的降解机制.结果表明:EDDS强化Fe0-Al0/O2体系对4-CP的去除率随溶液初始pH的升高而降低,但在pH=2.5~9范围内,始终具有较好的4-CP去除率;随Fe0:Al0质量比增加4-CP的去除率先增大后减小,最佳质量比为4:1;随EDDS投加量和4-CP初始浓度增加,4-CP的去除率增大;EDDS可使体系的高级氧化能力提高9倍,在初始pH=2.5、Fe0=8g/L、Al0=2g/L、EDDS=1.5mmol/L条件下,反应3h后100mg/L 4-CP的去除率和脱氯率均达到近100%..  相似文献   

19.
以喹啉为处理目标物,采用Fe2+活化K2S2O8(PS)的高级氧化体系在不同环境因素下降解喹啉.结果表明:与单一PS体系和Fe2+体系相比,Fe2+/PS体系可以有效降解喹啉.在初始喹啉浓度为250mg/L,喹啉/PS物质的量比为1:10,PS/Fe2+物质的量比为3,初始pH3,反应温度为45℃,反应时间为80min的条件下,喹啉降解率可达100%.提高PS和Fe2+浓度均能有效提高喹啉降解率,但超过一定限值后对喹啉去除效果不明显.Fe2+/PS去除喹啉的过程符合一级反应动力学.溶液初始pH值越高,喹啉去除率越低;反应温度越高,喹啉去除率越高.自由基淬灭实验证实,Fe2+活化PS体系中有SO4-·和OH·的存在,其中由SO4-·产生的OH·对喹啉的降解占主导地位.通过GC/MS检测到2种中间产物8-羟基喹啉和2(1H)-喹啉酮,据此推测基于硫酸根自由基强化喹啉降解的可能路径.大肠杆菌急性毒性实验结果证实,虽然Fe2+/PS体系去除喹啉过程中产生了毒性更强的中间产物,但酸性条件和较高的反应温度有利于体系脱毒.  相似文献   

20.
张李  付永胜  刘义青 《中国环境科学》2020,40(12):5260-5269
研究了Cu2+强化UV活化过氧乙酸(Cu2+/UV/PAA)对水中双氯芬酸(DCF)的降解,考察了pH值、PAA投加量、Cu2+投加量、无机阴离子(Cl-、SO42-、NO3-和CO32-)和溶解有机物(DOM)对DCF去除的影响;探讨了DCF在该体系中的降解产物和转化机理.结果表明:UV和Cu2+都能活化PAA产生活性自由基促进DCF降解.DCF在Cu2+/UV/PAA中的降解遵循准一级动力学,其降解可能归因于直接光解、HO·氧化和CH3COO·、CH3COOO·等其它自由基氧化.在pH=3~11范围内,DCF降解的最佳pH=8.5.DCF的降解效率随着PAA投加量的增大而逐渐增高,过量的PAA能与DCF竞争HO·.Cu2+用量的提高也能促进DCF的去除,但是过量的Cu2+可生成Cu(OH)2导致其催化能力下降.由于NO3-在UV照射下可以产生HO·,其对DCF降解有促进作用,且NO3-浓度越高,促进作用越明显.不同浓度的Cl-、SO42-、CO32-和DOM对DCF降解影响较小.在Cu2+/UV/PAA降解DCF的过程中,共检测出13种降解产物.根据这些降解产物,提出了DCF可能的转化机理,包括8种不同的反应路径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号