首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
成都市受特殊地形和气候条件影响,地面风速小,静风比例高,空气湿度大,大气污染物扩散缓慢,主要靠降水的冲刷和清除作用去除大气污染物.利用2014年5月13日-2017年12月31日成都市逐小时ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(O3)、ρ(CO)、ρ(SO2)监测数据和同期地面降水量观测数据,分析了降水前污染物质量浓度、小时最大降水量、降水持续时间及累积降水量对大气污染物清除效果的影响.结果表明:①降水对6种大气污染物的清除率随降水前污染物质量浓度的增加而增大,并且汛期降水对大气污染物的清除率大于非汛期降水.②降水对大气污染物起正清除作用,清除率随降水持续时间的增加而增大.③不同降水量对不同污染物的清除效果不同,对PM2.5、PM10、NO2、CO和SO2的清除率随降水量的增加而逐渐增大,对O3的清除效果相差不大且清除率均较大;小时最大降水量对PM2.5、PM10、NO2、O3、CO、SO2的清除率平均值分别为29.48%、26.95%、22.02%、26.87%、11.94%、28.75%,累积降水量的清除率平均值分别为31.64%、30.66%、24.38%、26.31%、13.89%、32.91%,其中CO不易溶于水,降水对其清除作用明显小于其他几种污染物.研究显示,降水对大气污染物的清除作用显著,对SO2、PM2.5和PM10的清除效果较好,而对CO的清除效果较差.   相似文献   

2.
利用区域空气质量模式WRF-Chem,对亚洲季风气候变化背景下云南省蒙自市大气环境容量进行模拟评估.根据标准化南亚夏季风指数分别选取2005年和2015年为强、弱季风年.对2015年四季(以1月、4月、7月和10月为代表月)和2005年夏季(7月为代表月)的主要大气污染物浓度进行模拟.结果表明蒙自市2015年全年CO、NO2、SO2、PM2.5、PM10的大气环境容量分别为120.31、1.127、1.875、1.267、1.688(×104t/a),其中各污染物冬季大气环境容量最小,春季的最大(PM10除外),且PM2.5在冬季排放量已饱和.强季风年相对弱季风年夏季CO、NO2、SO2、PM2.5、PM10的大气环境容量分别提升4.81%、3.86%、12.6%、18.4%、8.7%,其中PM2.5的容量提升最高.亚洲季风年际变化对云南高原空气质量及大气环境容量具有重要的调制作用.  相似文献   

3.
我国自2013年起对重点区域逐步开展重污染天气应对工作,以削减大气重污染峰值、减缓重污染的发生和发展.为更客观地评估重污染天气应急减排措施的效果,基于环境监测数据对应急效果评估开展方法学研究,通过对洛伦兹曲线内涵的拓展,提出污染物高位累积浓度占比的概念,并以PM2.5、PM10、SO2、NO2四种污染物为研究对象,评估重污染天气应急措施减排效果,同时将评估结果与空气质量模型模拟结果进行相互辅证.结果表明:2016年和2017年秋冬季(当年10月1日-翌年3月31日)"2+26"城市PM2.5、PM10、SO2、NO2高位累积浓度占比较2015年同期均有所下降,降幅为0.43%~3.80%;PM2.5、PM10高位累积浓度占比降幅相对SO2、NO2大,其中,2016年和2017年秋冬季PM2.5高位累积浓度占比较2015年同期降幅均为2.23%,PM10高位累积浓度占比较2015年同期降幅分别为1.89%、3.80%.研究显示,应急措施在"2+26"城市范围内对PM2.5、PM10、SO2、NO2起到了较显著的重污染削峰作用,其中,应急措施对PM2.5、PM10等颗粒物重污染削峰效果优于SO2、NO2等气态污染物.   相似文献   

4.
采用统计学方法、Pearson相关系数法和线性回归法研究分析了2018年吉林市大气污染物SO2、NO2、PM10、PM2.5、CO和O3浓度的变化特征、污染物浓度之间的相关性以及污染物与气象因素的相关性。结果表明:1)吉林市大气环境中O3、PM10和PM2.5日均值超标率分别为1.06%、3.27%和7.14%,颗粒物、O3及其前体物质为治理重点;CO、SO2、NO2、PM10和PM2.5春、冬季污染较重,夏季污染最轻;大气环境中的污染物浓度随季节、时刻及人类活动发生周期性变化;2)PM10和PM2.5、PM2.5和CO、NO2和CO浓度之间高度相关(相关系数r均>0.8),并建立了其预测线性模型;3)污染物(O3除外)浓度与温度、风速和混合层高度呈负相关,与气压呈正相关;降水对SO2、PM10和PM2.5浓度具有一定的削减作用,降水后其浓度减少的次数占总降水次数的68.75%、84.38%和78.13%;吉林市污染最严重的颗粒物受气象因素中混合层高度、风速和降水影响较大。该研究成果可为日后吉林市开展大气污染治理、区域大气环境容量测算、空气污染潜势预报等研究提供参考。  相似文献   

5.
为了评估抗战纪念活动期间污染物减排措施对北京市空气质量的影响,利用2015年8月1日~2015年9月18日北京市大气污染物浓度数据,以及2014年同期监测数据进行对比分析.结果表明:减排期间(2015年8月20日~2015年9月3日)北京市PM2.5,SO2,NO2和CO浓度均值为17.05mg/m3,2.35mg/m3,21.04mg/m3和0.56mg/m3,对比减排前期,各污染物分别下降了71.26%,36.49%,37.92%和37.78%,减排后期,随着减排措施的取消,大气污染物反弹上升.与2014年同期相比,减排期间污染物浓度分别下降了73.59%,56.64%,52.39%和38.46%,大气质量改善效果显著.3个时段(减排期间,活动当天和2014年同期)污染物浓度日变化特征相似,整体上呈现2014年同期>减排期间>活动当天的特征.空间分布上,各站点污染物浓度均远低于2014年同期水平,其中PM2.5降幅大且空间差异较小,SO2在空间上差异最为明显,不同站点的PM2.5降幅在68.91%~77.63%之间,SO2降幅在7.43%~74.75%之间,NO2降幅在34.60%~72.28%之间,CO降幅在24.98%~63.73%之间.减排期间北京市PM2.5,SO2,NO2和CO浓度分别比周边城市均值低24.66%,81.00%,27.30%和36.36%,也从另一方面反映出减排措施的明显效果.  相似文献   

6.
为探讨颗粒物对金昌市高血压门急诊就诊人数影响的暴露反应关系,本文收集甘肃省金昌市2012年1月1日~2015年12月31日大气PM10、SO2、NO2数据及2014年1月1日~2015年12月31日大气PM2.5污染物监测数据及同期气象观测数据,同时收集近年金昌市三家综合医院的高血压门急诊日就诊病例.采用广义相加模型,分析不同大气污染物与高血压门急诊日就诊人数的关联性.结果表明,在单污染物模型中,滞后L07d时PM10平均浓度每升高一个IQR,高血压日门急诊人数增加2.30%(95% CI:1.30%~3.32%),L6d时PM2.5平均浓度每升高一个IQR,高血压日门急诊人数增加2.53%(95% CI:1.45%~3.62%).PM10和PM2.5对男性、65岁以上高血压患者门急诊影响更高.SO2和NO2与颗粒物之间存在协同效应,沙尘天气下PM10对高血压门急诊人数的影响由2.30%增加到2.36%,PM2.5的影响由2.53%减少到2.39%.研究得出颗粒物污染对金昌市高血压门急诊就诊人数具有不同程度的影响,其中细颗粒物(PM2.5)的效应更强.  相似文献   

7.
国内生产总值(Gross domestic product, GDP)可反映地区的经济实力和市场规模,环境空气质量指数AQI及污染物浓度(SO2、NO2、PM10、PM2.5、CO、O3)可反映环境空气质量,二者具有相关性。本研究以高原山地省会城市—昆明市为代表,研究近10年(2013—2022年)环境空气质量与区域GDP的环境库兹涅茨EKC曲线,并分析空气中代表性污染物浓度的变化趋势及相互关系,再对环境空气AQI指数变化做出ARIMA模型的预测。近10年来,昆明市环境空气AQI指数与GDP的发展呈现良性促进,随着GDP增长总体呈现下降向好趋势。环境空气中O3与PM10、PM2.5和CO具有中度相关性。未来两年环境空气AQI指数可能受到O3的影响而分别升高2.5%和3.7%。  相似文献   

8.
为进一步了解武汉市大气污染时空分布特征,对2017—2020年武汉市主要大气污染物(PM2.5、PM10、SO2、CO、NO2和O3)进行了空间插值分析、时间变化分析以及与气象要素的相关性分析。结果表明:武汉市近4年环境空气质量达标率为72.98%。PM2.5、PM10、SO2、CO和NO2具有“冬高夏低”的“V”形特征,O3呈“夏高冬低”的变化趋势。武汉市年均质量浓度超标的大气污染物主要有PM2.5和PM10,但其年均质量浓度均呈下降趋势,而O3是年均质量浓度唯一处于上升状态的大气污染物,今后应重点关注颗粒物与臭氧污染。PM2.5、PM10、SO2、CO和NO2主要集中在武昌区、蔡甸区、青山区、江汉区、江岸区,而O<...  相似文献   

9.
广州城区近地面层大气污染物垂直分布特征   总被引:7,自引:1,他引:6       下载免费PDF全文
为更好地了解广州城区近地面层大气污染物的扩散与输送过程,利用广州塔4层大气污染物垂直梯度观测平台(高度分别为地面、118、168和488 m)于2014年1月—2015年12月对多种大气污染物进行连续观测,分析了广州城区近地面层大气污染物的垂直分布特征.结果表明:①ρ(PM10)、ρ(PM2.5)、ρ(PM1)、ρ(NO2)和ρ(NO)随高度的上升而降低,其中ρ(PM10)、ρ(PM2.5)和ρ(PM1)在低层(地面点位)—高层(488 m点位)的递减率分别为35%、30%和26%,ρ(NO2)和ρ(NO)分别为75%和84%;ρ(O3)随高度上升而增加,其低层—高层的增长率为135%;ρ(SO2)和ρ(CO)则随高度上升先增后减.②除ρ(O3)外,其余污染物浓度均符合“冬强夏弱”的季节特征,ρ(O3)则在夏秋季较高,春冬季较低.冬季ρ(PM10)、ρ(PM2.5)、ρ(NO2)和ρ(NO)高、低层间差异为全年各季最大,分别为38.6、18.5、49.4和31.9 μg/m3.③各污染物小时浓度日变化特征均不同程度地受混合层发展过程的影响,各高度污染物浓度在一天中混合层高度最高的时段(12:00—17:00)最接近,而在其余时段分层较明显.除O3外,其余污染物质量浓度在中、低层大致呈早晚双峰分布,而在高层大致呈单峰分布.ρ(O3)则在各层均保持单峰分布,峰值一致出现在14:00.④对一次典型污染过程分析发现,不同高度的ρ(PM2.5)和ρ(NO2)最大差值分别可达183.0和148.0 μg/m3,ρ(PM2.5)显著地受到本地近地面污染源的影响,污染物高浓度区域主要集中在488 m以下.   相似文献   

10.
为探究北方沿海城市大气PM2.5的化学组分特征及其关键来源,本文选择典型代表城市青岛市作为研究对象,在2021年3月-2022年2月采集大气PM2.5样品,测定水溶性无机离子、碳组分及化学元素等组分,深入分析大气PM2.5化学组分特征,采用正定矩阵因子分解(PMF)和潜在源贡献函数(PSCF)对青岛市PM2.5的主要贡献源类和潜在源区进行分析研究.结果表明:(1)采样期间青岛市PM2.5浓度平均值为42.2μg/m3,NO3-、NH4+、SO42-、OC是PM2.5的主导成分,浓度分别为11.77、5.76、5.20和6.67μg/m3,占比分别为27.88%、13.65%、12.32%和15.80%.(2)各组分浓度季节性变化与PM2.5浓度变化基本一致,呈现冬季最高、夏季最低,春...  相似文献   

11.
采用随机森林算法剥离了排放和气象对6种大气污染物(SO2、 NO2、 CO、 PM10、 PM2.5和O3)浓度的贡献,识别了疫情前后武汉市中心城区、郊区、工业区、三环线交通点和城市背景点这5种类型点位的大气污染物浓度变化.结果表明,与管控前相比,管控期间PM2.5/CO、 PM10/CO和NO2/CO分别减小了10.8~21.7、 9.34~24.7和14.4~22.1倍,表明排放对PM2.5、 PM10和NO2贡献减小;O3/CO增加了50.1~61.5倍,表明二次生成增加明显.解除管控后排放对各类污染物的贡献均增加.管控期间,受一些不可间断工序的运行影响,工业区PM2.5降幅最小(20.5%).与管控期间相比,解除管控后居民生活、交通出行和工业生产等基本恢复,使5种类型站点PM2.5  相似文献   

12.
为研究南京主要大气复合污染物PM2.5、PM10和O3四季变化特征及其气象影响因子,利用2013年1月~2015年2月国控点环境监测数据对浓度特征进行统计分析,再利用WRF模式模拟的精细大气边界层气象场,分析气象要素与各污染物的相关性,并建立统计模型.结果表明:PM10、PM2.5冬高夏低,冬季日均值分别为160.6μg/m3和98.0μg/m3;日变化特征四季基本一致,但秋冬季最强,夏季最弱,且冬季上午峰值比其余三季延后1~2h.各季大气可吸入颗粒物中细粒子占主导,PM2.5/PM10年均值为0.59;首要污染物为PM2.5、PM10、O3的年频率分别为51.5%、26.6%和13.5%,PM2.5主导四季AQI的变化,尤其是在重污染的情况下,首要污染物为PM2.5占96%.O3浓度春末夏初高、秋末冬初低,日变化为单峰式;O3与边界层高度呈显著正相关,四季相关系数分别为0.500、0.572、0.326、0.323.四季PM10、PM2.5、O3_8h_max日值逐步回归方程拟合度为40%~65%.  相似文献   

13.
本文分析了2014~2015年兰州市春季沙尘天气期间颗粒污染物PM10、PM2.5及气态污染物SO2、NO2、CO和O3质量浓度的演变规律.结果表明,沙尘天气造成PM10和PM2.5浓度上升,而SO2、NO2和CO浓度表现为降低(置换型)或升高(叠加型),O3浓度受沙尘天气影响不明显.置换型的PM10和PM2.5平均质量浓度分别为1086.9和286μg/m3,SO2、NO2和CO平均质量浓度分别为16.7、41.0和1.02×103μg/m3.叠加型的PM10和PM2.5平均质量浓度分别为383.2和116.2μg/m3,SO2、NO2和CO平均质量浓度分别为24.5、49.1和1.19×103μg/m3.置换型的PM10和PM2.5平均质量浓度分别为叠加型的2.8和2.4倍,叠加型的SO2、NO2和CO平均质量浓度分别为置换型的1.47、1.2和1.17倍.置换型对应的气象条件为近地面东北方向大风、显著降温和高压,即强冷空气活动时,PM10和PM2.5浓度上升,而SO2、NO2和CO浓度显著减小,沙尘源地主要为塔克拉玛干沙漠和青藏高原北部地区,影响气流多为1500~6000m高空西北气流.叠加型则为近地面东北风向弱风,气温和气压无明显波动,即弱冷空气活动时,初期PM10和PM2.5浓度上升,同时SO2、NO2和CO浓度略下降,而后PM10和PM2.5维持高值时SO2、NO2和CO浓度亦上升,沙尘源地主要为巴丹吉林沙漠,影响气流多为1500m以下低空西北气流.  相似文献   

14.
在区域复合型大气污染逐渐常态化之下,联防联控治理的新模式已成为解决区域性大气污染的根本途径和有效措施.利用2015年冬季(2015年11月8日—2016年1月20日)、2016年冬季(2016年11月8日—2017年1月20日)安徽省16个城市大气污染物(NO2、SO2、CO、O3、PM10、PM2.5)浓度数据,结合耦合协调度模型、探索性空间数据分析和障碍度模型,分析大气污染物的时空格局特征,描述其演变规律和总体走向,诊断区域大气污染物中的首要障碍因子.结果表明:①安徽省大气污染物浓度水平具有时间波动性和空间非均衡性,NO2、O3、PM10和PM2.5指数水平表现为递增态势,整体呈现“两高一低”,即皖北高(0.050 3)、中部地区高(0.050 1)和皖南低(0.040 5)的态势,年际变化呈增长趋势,空间分异度变化较大;②安徽省大气污染物耦合度较高,基本维持在拮抗阶段(2015年冬季和2016年冬季耦合度年均值分别为0.480、0.479),皖北呈增加态势,而中、南部城市主要呈略微降低趋势;包括极度失调和严重失调两种类型(2015年冬季和2016年冬季协调度平均值分别为0.114、0.123);③安徽省内各城市大气污染物在全省范围内热、冷点分布迥异,2015年冬季和2016年冬季主要经历了聚拢(NO2、O3向中部城市聚拢)和北迁(PM10、PM2.5往北迁)两个过程.研究显示,结合安徽省大气污染物障碍度测量分析,优化和量化区域大气污染物中的首要障碍因子,可为有效开展地区大气污染的防控治理及区域联动提供有利保障.   相似文献   

15.
青岛环境空气PM10和PM2.5污染特征与来源比较   总被引:9,自引:1,他引:8  
年分别在青岛设6个和2个采样点采集PM10和PM2.5样品,分析二者质量浓度及颗粒物中多种无机元素、水溶性离子和碳等组分的质量浓度,以研究PM10及PM2.5的污染特征. 采用CMB-iteration模型估算法,确定一次源类及二次源类对PM10和PM2.5的贡献,利用统计学方法比较PM10和PM2.5的污染源. 结果表明:青岛大气颗粒物质量浓度季节变化显著,表现为春、冬季高,夏、秋季低;Na、Mg、Al、Si、Ca和Fe元素主要富集在PM10中,SO42-、NO3-、EC和OC主要富集在PM2.5中;城市扬尘、煤烟尘、建筑水泥尘及海盐粒子等粗粒子在PM10中的分担率较PM2.5中的高,分担率分别为28.7%、17.2%、7.16%及4.47%;二次硫酸盐、二次硝酸盐、机动车尾气尘及SOC(二次有机碳)等在PM2.5中的分担率较PM10中的高,分担率分别为19.3%、8.97%、13.7%及6.07%;由PM10与PM2.5化学组分的分歧系数可见,春、秋季PM10和PM2.5化学构成存在一定差异,而冬、夏季二者的化学构成相似.   相似文献   

16.
北京市能源消费正面临着污染物减排和保障居民健康的双重约束. 针对未来城市能源消费设计BAU(基准情景)和2个分别基于近期和中长期节能环保要求的受控情景(EC1、EC2),模拟预测了3个情景下主要大气污染物(SO2、NOx、PM10、PM2.5)在目标年(2020年)的排放水平,以确定大气污染减排潜力. 分别采用综合暴露-反应关系模型(IER)和泊松回归模型,评估北京市居民对PM2.5暴露的健康风险,估算健康损失的经济价值. 结果表明:相较BAU情景,在EC1情景下, SO2、NOx、PM10、PM2.5减排率分别达到52.95%、49.77%、32.82%、41.41%,可减少PM2.5暴露下居民死亡和发病219 783例,其中死亡1 295例、住院3 920例、门诊182 558例、患病32 011例,获得健康效益111.87×108元;在EC2情景下,SO2、NOx、PM10、PM2.5的减排率分别达到66.61%、63.42%、54.96%、57.44%,可减少PM2.5暴露下居民死亡和发病519 234例,其中死亡2 930例、住院9 248例、门诊427 070例、患病79 986例,获得健康效益290.10×108元. 相较EC1情景,EC2情景可产生更大的减排潜力和居民健康效益. 从空间分布上来看,北京主城区因能源方案优化获得的健康效益较大,约占总健康经济效益的60%.   相似文献   

17.
分析了长江三角洲地区电厂排放的基本特征并利用WRF-Chem模拟冬季大气污染状况,研究了冬季电厂排放主要污染物的特征及其对空气质量的影响,结果显示,长三角电厂排放的主要大气污染物为SO2、NOx及PM2.5,2010年排放量可分别达到826.8、1475.6和137.3Gg,分别占长三角地区人为源总排放量的34%、38%和14%.冬季主要大气污染物(SO2、NO2、PM2.5)浓度高值区分布在南京-上海,杭州-宁波一带.电厂对SO2浓度贡献量(率)的空间分布与SO2排放的空间分布较为一致,而NO2、PM2.5,其贡献量(率)的高值区主要分布在安徽、浙江和江西的交界处以及浙江省的东海岸.相对SO2、NO2,电厂对PM2.5贡献量(率)较低,各地均在20μg/m3(15%)以下.污染时期电厂排放对模拟的PM2.5和SO2贡献率(6.9%、34.2%)较清洁时期(4.9%、20.7%)大,而对于NO2,清洁和污染时期的贡献量没有明显差别,均在10μg/m3左右.冬季气温低、风速小及边界层高度低的特征不利于低层污染物的扩散,易导致重污染事件的发生.  相似文献   

18.
2013~2014年北京大气重污染特征研究   总被引:30,自引:0,他引:30  
从污染物浓度的时间变化、空间分布以及大气污染类型等方面,对2013~2014年北京大气重污染过程进行了分析,并初步探讨其影响因素.结果表明:2013~2014年北京共出现大气重污染105d,重污染频率为14.4%.其中,首要污染物为PM2.5的天数为103d,首要污染物为PM10和O3各有1d;冬半年重污染天数占全年的76.2%.重污染气象要素特征主要表现为风速小、湿度高、能见度低.重污染日PM2.5/PM10浓度比值为91.3%,明显高于全年平均水平,表明重污染时颗粒物以细颗粒物为主.北京大气重污染区域分布表现为南高北低,平原高、山区低的总体特征,交通站重污染天数普遍高于市区其它站点.北京大气重污染主要表现为积累型、光化学型、沙尘型以及复合型等类别;其中积累型大气重污染往往伴有区域污染水平的整体升高,PM2.5组分中NO3-、SO42-、NH4+等水溶性二次离子的浓度增幅最为明显;O3污染在近两年有加重的趋势.  相似文献   

19.
从人群健康角度分析我国大气PM2.5和O3污染导致的健康效益时空变化趋势及其影响因素,合理预测未来10年变化,为制定大气污染控制策略及目标提供决策支持.采用相对风险评估模型评估我国338个地级及以上城市2015—2018年大气PM2.5和O3污染导致健康效益的时空变化趋势,参考全球疾病负担2017年的方法估算人口数量、年龄结构、疾病死亡率及污染物浓度等因素对健康效益的贡献率,并设定不同目标情景预测2025年和2030年的健康效益.结果表明:①PM2.5导致的过早死亡人数从2015年的152.21×104人降至2018年的136.82×104人,O3导致的过早死亡人数从2015年的7.99×104人增至2018年的8.27×104人,两种污染物导致的健康效应最高值均出现在“2+26”城市.②人口数量、年龄结构、疾病死亡率和污染物浓度对归因于PM2.5的过早死亡人数变化的贡献率分别为4.83%、30.55%、19.00%及45.62%,对归因于O3的过早死亡人数变化的贡献率分别为17.76%、12.34%、23.41%及46.48%.③基于社会发展情况预测,大气PM2.5浓度2025年需降至40 μg/m3以下、2030年需降至35 μg/m3以下,且大气O3浓度2025年需与2018年持平、2030年比2018年降低4%,两种污染物导致的过早死亡人数才能与2018年接近.研究显示,未来我国应制定更高目标的大气污染控制政策,持续加强PM2.5的污染控制,进一步遏制O3的上升趋势,在生态环境保护上做到方向不变、力度不减,才能充分保障公众健康.   相似文献   

20.
评估国家重点生态功能区及毗邻区空气质量时空异质性,对差异性开展空气污染防治具有重要意义。该研究基于2015-2019年东北地区13个生态功能区城市和23个毗邻非生态功能区城市的AQI及6种空气污染物(PM2.5、PM10、SO2、NO2、CO、O3)浓度数据,采用空间自相关、随机森林模型等方法分析空气污染物时空差异及其驱动因素。结果表明:(1)从时间尺度来看,与2015年相比,2019年除O3在5年中波动上升且年均浓度值相对较高外,其他的污染物浓度值均呈下降趋势,生态功能区空气质量整体优于非生态功能区。其中SO2浓度下降幅度(50%)大于NO2和CO(20%),PM2.5大于PM10。PM2.5、PM10、NO2、SO2、CO季节变化特征最高值均出现在冬季,O3...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号