首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT: The fate and effect of sodium chloride applied to Californian highways in the Lake Tahoe, Truckee River, and Yuba River watersheds were studied over a period of 14 months in 1974–75. Chloride levels in streams below major freeways were found to be elevated during the winter. The high chloride levels occurred after the application of salt to roads, decreasing as the time from application increases. Small lakes receiving runoff from major highways were also enriched with chloride. Several of these lakes displayed a temporary chemocline, which was sufficiently strong to stabilize a temperature inversion in one lake.  相似文献   

2.
The variability in depositional environments in ancient peat bog and coal facies characteristics was investigated with 29 coal samples from four coalbed methane wells in South Yanchuan Block, Southeast Ordos Basin, China. The control of methane content is described as coal facies parameters and the corresponding measurements of methane content. The results indicated that the depositional environment of ancient peat bog in South Yanchuan Block is primarily a lower delta plain, and a low tissue preservation index (TPI) and high gelification index (GI) are typical features of reservoir’s coal facies, reflecting a deep water depositional environment in ancient peat bog. Compared with the coal facies characteristics of the western area, the coal reservoir in the eastern area displays low GI and high ash content as a result of ancient peat bog’s proximity to sea and source area. Various lateral methane contents are influenced by burial depth, whereas the characteristics of coal facies have a strong control on methane content within the single well in vertical direction. The methane content increases with increase in GI and vitrinite to inertinite ratio (V:I), while there are indistinct relationships between TPI and transportation index with methane content. With high GI and longer distance to sea and source area, the methane content in the western area is higher than that of the eastern area. High desmocollinite content also has a negative influence on methane content.  相似文献   

3.
The effects of water quality on brine discharged from oil and gas recovery operations are described for surface water and ground water in two small watersheds in eastern Kentucky. The brine, which had salinity that was often several times that of sea water, led to significantly higher concentrations of several minerals in surface water, particularly in the first and second order streams. Concentractions as high as 50,000 mg/I for sodium and 64,000 mg/I for chloride were measured in streams. The. differences in chemical concentrations for various chemicals over the period of the study were ascribed to temporal variability, particularly due to differences between wet and dry seasons, and to spatial variability, particularly due to dilution and other chemical decay processes. Chemical decay coefficients for sodium and chloride were developed as a function of watershed area for possible application to similar watersheds. There was some evidence that the brine was influencing the Licking River, the major stream that drains the eastern part of Kentucky.  相似文献   

4.
ABSTRACT The impacts of milled peat mining on runoff quality in northern Minnesota were determined using a multiple watershed approach. The frequency distributions of water quality constituents were used to detect whether runoff from a mined bog differed from that of 15 unmined (control) bogs. Peat mining increased water temperature, suspended sediment, specific conductance and concentrations of acidity, iron, sodium, and nitrogen species, although drinking water standards were not exceeded (α= 0.05). The method presented may be applicable for other nonpoint pollution investigations.  相似文献   

5.
This study examined the effects of agricultural runoff on the vegetation structure of Franklin Bog, a priority conservation area located in a rapidly developing region of northwestern Vermont. Forested and agricultural runoff from the mixed land use watershed created differential vegetation patterns in the wetland, including weedy species introductions. Concentrations of nitrogen and phosphorus were measured in the stream runoff from four forested subwatersheds and two agricultural subwatersheds. Nutrient concentrations were significantly higher for agricultural vs. forested runoff for all measured parameters. Nitrate and total phosphorus concentrations in agricultural runoff ranged from 0.62 to 1.35 mg L(-1) and 0.07 to 0.37 mg L(-1), respectively. Forested runoff values were less than 0.37 mg L(-1) nitrate and 0.09 mg L(-1) total phosphorus. Significantly higher proportions of weedy species occurred at impacted vs. reference sites (46 +/- 5% vs. 23 +/- 4%). Furthermore, significantly higher total percent vegetated cover occurred at impacted vs. reference sites (116 +/- 11% vs. 77 +/- 9%) suggesting nutrient induced plant growth. Of the nine frequently occurring species categorized as bog species, only one was found within impacted sites while all nine were found at the reference sites. This suggests that the wetland's distinctive native flora is being replaced by widespread, vigorous species enhanced by agricultural nonpoint pollution in the watershed of Franklin Bog. Protection of wetlands requires attention to conservation measures throughout the entire watershed.  相似文献   

6.
ABSTRACT: Salinity increases in water in some parts of the Nava-jo aquifer in southeastern Utah have been documented previously. The purpose of this paper is to use bromide, iodide, and chloride concentrations and del oxygen-18 and deuterium values in water from the study area to determine if oil-field brines (OFB) could be the source of increased salinity. Mixing-model results indicate that the bromide-to-chloride X 10,000 weight ratio characteristic of OFB in and outside the study area could not be causing the bromide depletion with increasing salinity in the Navajo aquifer. Mixing-model results indicate that a mixture of one percent OFB with 99 percent Navajo aquifer water would more than double the bromide-to-chloride weight ratio, instead of the observed decrease in the weight ratio with increasing chloride concentration. The trend of the mixing line representing the isotopically enriched samples from the Navajo aquifer does not indicate OFB as the source of isotopically enriched water; however, the simulated isotopic composition of injection water could be a salinity source. The lighter isotopic composition of OFB samples from the Aneth, Ratherford, White Mesa Unit, and McElmo Creek injection sites relative to the lsmay site is a result of continued recycling of injection water mixed with various proportions of isotopically lighter make-up water from the alluvial aquifer along the San Juan River. A mixing model using the isotopic composition of the simulated injection water suggests that enriched samples from the Navajo aquifer are composed of 36 to 75 percent of the simulated injection water. However, chloride concentrations predicted by the isotopic mixing model are up to 13.4 times larger than the measured chloride concentrations in isotopically enriched samples from the Navajo aquifer, indicating that injection water is not the source of increased salinity. Geochemical data consistently show that OFB and associated injection water from the Greater Aneth Oil Field are not the source of salinity increases in the Navajo aquifer.  相似文献   

7.
Winter deicers are a major source of chloride contamination to shallow aquifers in northern latitudes. In the greater Chicago area of northeast Illinois, chloride has been accumulating for decades and in many places now exceeds the United States Environmental Protection Agency secondary standard of 250 mg/L. MODFLOW-NWT and MT3D-USGS were used to simulate the accumulation of chloride with 30 years of data in the shallow aquifer of Will County in northeast Illinois. This aquifer is composed of unconsolidated sediments, largely from glacial deposits, overlying a fractured dolomite bedrock. To calibrate to observed heads and chloride, the model needed refined geologic features, higher chloride concentrations on cells representing commercial or industrial lands, lower chloride concentrations on cells representing roads, and point source areas to speed chloride's emergence in the aquifer. These point sources are locally significant and could represent different anthropogenic or geologic features, such as municipal stormwater infrastructure. Future simulations indicate that chloride is not at steady state in the shallow aquifer and wells are at risk of exceeding the secondary standard if winter deicing applications are not reduced. It may take decades for the full impacts of reduced deicing rates to be observed in wells, owing to the long residence time of water in the aquifer. This transient model calibration was possible because of the 30-year dataset collected by communities and government agencies.  相似文献   

8.
Abstract: Relationships between discharge, land use, and nitrogen sources and sinks were developed using 5 years of synoptic sampling along a 300 km reach of the Rio Grande in central New Mexico. Average river discharge was higher during 2001 and 2005 “wet years” (15 m3/s) than during the drought years of 2002‐04 “dry years” (8.9 m3/s), but there were no differences in nitrogen loading from wastewater treatment plants (WWTPs) which were the largest and most consistent source of nitrogen to the river (1,330 kg/day). Average total dissolved nitrogen (TDN) concentrations remained elevated for 180 km downstream of the Albuquerque WWTP averaging 1.2 mg/l in wet years and 0.52 mg/l in dry years. Possible explanations for the constant elevated TDN concentrations downstream of the major point source include reduced nitrogen retention capacity, minimal contact with riparian or channel vegetation, large suspended sediment loads, and low algal biomass. Somewhat surprisingly, agricultural return flows had lower average nitrogen concentrations than river water originally diverted to agriculture in both wet (0.81 mg/l) and dry years (0.19 mg/l), indicating that the agricultural system is a sink for nitrogen. Lower average nitrogen concentrations in the river during the dry years can be explained by the input of agricultural returns which comprise the majority of river flow in dry years.  相似文献   

9.
Regression analyses of major ion concentration in relation to specific conductance of water from the Mohawk River during two separate periods, 1951–53 and 1970–74, indicate statistically insignificant changes in the linear relationship of all constituents studied except chloride. Mean values and changes in the slopes of these relationships indicate that sodium and chloride have had consistently higher yields, in kilograms per square kilometer per year, than the other ions, although all ions show a general 20 percent increase in yields during the two decades. This general increase in ion yields is attributed to an accelerated transport rate of ions out of the basin as a result of a 19 percent increase in mean stream discharge. Transport rates of sodium and chloride have increased by 72 and 145 percent, respectively, in the Mohawk River since the early 1950's. Analysis of the sodium and chloride sources indicates rock salt used as a road deicei to be the primary source. This salt use accounts for 96 percent of the sodium transport increase and 69 percent of the chloride transport increase within the basin during the last two decades.  相似文献   

10.
ABSTRACT: Many water wells developed in the Middle Mississippian Greenbrier Group of central Greenbrier County, West Virginia, are very productive because of the abundant solution conduits in this karst aquifer. Water from these wells, all of which (with one exception) are clustered in a small area about eight kilometers northwest of Lewisburg, West Virginia, is typically very hard (calcium-magnesium-bicarbonate type). Of 74 wells sampled, eight showed sulfate concentrations ranging from 600 to 1700 mg/l. These wells also showed a much higher than average concentration of calcium, magnesium, chloride, sodium, and, in a few cases, iron. The water from several of these wells was not potable. Previously unpublished work has suggested that dolomite and gypsum dissolution have contributed magnesium and sulfate ions to the ground water. It is also likely that, where sodium, chloride, and iron concentrations are above background, halite dissolution and pyrite oxidation are contributing to the problem. All of these minerals are often associated with the basal waterbearing strata of the Greenbrier Group. In addition, it is possible that the wells are receiving deeply circulating ground waters, via fracture zones, which feed many other well-known sulfur and/or thermal springs in the central Appalachians.  相似文献   

11.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

12.
ABSTRACT: Specific conductivity, pH, dissolved oxygen, carbon, phosphorous, and nitrogen species were measured at 36 stations in the Richibucto River drainage basin, including the estuary, in New Brunswick, Canada, over the six‐year period 1996 through 2001. Each station was sampled between 1 and 26 times (mean = 7.5, standard deviation = 6.0) during the ice free seasons without regard to tide. There was significant variance among stations in most parameters. Principal component analysis (PCA) was used to identify the processes explaining the observed variance in water quality. Because of the high variability in specific conductance, stations were first grouped in a freshwater subset and an estuarine (brackish water) subset. For freshwater stations, most of the variance in water quality was explained by pH and total organic carbon, as well as high nutrient concentrations. These high nutrient concentrations, along with water salinity, which varies with flow and tides, are also important in determining water quality variability in brackish water. It is recommended that water quality parameters that were found to explain most of the variance by PCA be monitored more closely, as they are key elements in understanding the variability in water quality in the Richibucto drainage basin. Cluster analyses showed that high phosphorous and nitrate concentrations were mostly found in areas of peat runoff, tributaries receiving treated municipal effluent, and lentic zones upstream of culverts. Peat runoff was also shown to be acidic, whether it is runoff from a harvested area or a natural bog.  相似文献   

13.
ABSTRACT: Concentrations of nitrite plus nitrate, ammonia, orthophosphate, and atrazine were measured in streams and ground water beneath the streams at 23 sites in the South Platte River basin of Colorado, Nebraska, and Wyoming to assess: (1) the role of ground water as a source of nutrients and atrazine to streams in the basin, and (2) the effect of land-use setting on this process. Concentrations of nitrite plus nitrate, ammonia, orthophosphate, and atrazine were higher in ground water than in the overlying streams at 2, 12, 12, and 3 of 19 sites, respectively, where there was not a measurable hydraulic gradient directed from the stream to the ground water. Orthophosphate was the only constituent that had a significantly higher (p ≤ 0.05) concentration in ground water than in surface water for a given land-use setting (range land). Redox conditions in ground water were more important than land-use setting in influencing whether ground water was a source of elevated nitrite plus nitrate concentrations to streams in the basin. The ratios of nitrite plus nitrate in ground water/surface were were significantly lower (p ≤ 0.05) at sites having concentrations of dissolved oxygen in ground water ≤ 0.5 mg/L than at sites having dissolved oxygen concentrations ≥ 0.5 mg/L. Elevated concentrations of ammonia or atrazine in ground water occurred at sites in close proximity to likely sources of ammonia or atrazine, regardless of land-use setting. These results indicate that land-use setting is not the only factor that influences whether ground water is a source of elevated nutrient and atrazine concentrations to streams in the South Platte River Basin.  相似文献   

14.
The Abbotsford-Sumas Aquifer is a shallow, predominantly unconfined aquifer that spans regions in southwestern British Columbia, Canada and northwestern Washington, USA. The aquifer is prone to nitrate contamination because of extensive regional agricultural practices. A 22-month ground water nitrate assessment was performed in a 10-km2 study area adjacent to the international boundary in northwestern Washington to examine nitrate concentrations and nitrogen isotope ratios to characterize local source contributions from up-gradient sources in Canada. Nitrate concentrations in excess of 10 mg nitrate as nitrogen per liter (mg N L(-1)) were observed in ground water from most of the 26 domestic wells sampled in the study area, and in a creek that dissects the study area. The nitrate distribution was characteristic of nonpoint agricultural sources and consistent with the historical documentation of agriculturally related nitrate contamination in many parts of the aquifer. Hydrogeologic information, nitrogen isotope values, and statistical analyses indicated a nitrate concentration stratification in the study area. The highest concentrations (> 20 mg N L(-1)) occurred in shallow regions of the aquifer and were linked to local agricultural practices in northwestern Washington. Nitrate concentrations in excess of 10 mg N L(-1) deeper in the aquifer (> 10 m) were related to agricultural sources in Canada. The identification of two possible sources of ground water nitrate in northwestern Washington adds to the difficulty in assessing and implementing local nutrient management plans for protecting drinking water in the region.  相似文献   

15.
ABSTRACT: Two water‐quality studies were done on the outskirts of the Detroit metropolitan area to determine how recent residential development has affected ground‐water quality. Pairs of monitor and domestic wells were sampled in areas where residential land use overlies glacial outwash deposits. Young, shallow waters had significantly higher median concentrations of nitrate, chloride, and dissolved solids than older, deeper waters. Analysis of chloride/bromide ratios indicates that elevated salinities are due to human activities rather than natural factors, such as upward migration of brine. Trace concentrations of volatile organic compounds were detected in samples from 97 percent of the monitor wells. Pesticides were detected infrequently even though they are routinely applied to lawns and roadways in the study area. The greatest influence on ground‐water quality appears to be from septic‐system effluent (domestic sewage, household solvents, water‐softener backwash) and infiltration of storm‐water runoff from paved surfaces (road salt, fuel residue). No health‐related drinking‐water standards were exceeded in samples from domestic wells. However, the effects of human activities are apparent in 76 percent of young waters, and at depths far below 25 feet, which is the current minimum well‐depth requirement.  相似文献   

16.
Abstract: In northern regions, large volumes of water are needed for activities such as winter road construction. Such withdrawals, particularly from small lakes, can reduce oxygen concentrations and water levels, potentially affecting aquatic organisms. Withdrawal limits have been developed by regulatory agencies, but are largely theoretical. Water withdrawal thresholds were tested in two small lakes by removing 10% and 20% of their respective under‐ice volumes and comparing oxygen parameters, temperature, over‐wintering habitat, and northern pike (Esox lucius) abundance to reference conditions. Because of a milder winter, oxygen parameters were elevated in reference lakes in the period following withdrawal compared to the prewithdrawal period. The 10% withdrawal resulted in a ?0.2 m shift in the oxygen concentration profile at 4 mg/l in that lake, but had no effect on total volume‐weighted oxygen, or volume of over‐wintering habitat. In contrast, the 20% withdrawal caused 0.7 m reduction in the oxygen concentration profile at 4 mg/l compared to the previous year, a 26% decline in the volume‐weighted oxygen concentration, and a 23% reduction in the volume of over‐wintering habitat compared to prewithdrawal conditions. Water temperatures were slightly (≤ 10%) colder in the upper strata in the year following the withdrawal in both withdrawal and reference lakes. Northern pike abundance was not impacted by water withdrawals in either of the lakes. The results of this study show that the effects of water withdrawal on the parameters investigated reflected the characteristics of the lakes, and would therefore be expected to vary from lake to lake. Policy development to mitigate impacts must therefore reflect the site‐specific nature of water withdrawal.  相似文献   

17.
Wastewater produced from a metal plating is a major environmental problem. Industrial auditing revealed that the main source of pollution mainly originated from rinsing water. The characterization of final effluent showed that it is highly contaminated with hazardous heavy metals and cyanide. The concentration of copper, hexavalent chromium, nickel, and cyanide in the rinsing water of metal plating department was 14.8, 40.9, 13.3, and 19 mg/l, respectively. The concentration of cyanide and zinc from the galvanizing department reached 60 and 80 mg/l. The remediation scheme included the application of in-plant control measures via changing the rinsing process followed by the destruction of cyanide and reduction of hexavalent chromium bearing wastes. The pretreated wastes were then mixed with other industrial wastes prior to a combined chemical coagulation-sedimentation using lime and/or lime in combination with ferric chloride. The results indicated that, after applying the waste minimization measures alone at the source, prior to final treatment of industrial waste, removal rates of cyanide, copper, nickel, and chromium concentrations were 23.2%, 14.9%, 32.3%, and 55.3%, respectively in the rinse water from metal plating department. Furthermore, the removal rates of cyanide and zinc in the galvanizing department reached 59.7% and 24.3. The integrated control measures and treatment scheme led to more than 99% removal of copper, nickel, chromium, and zinc, while the complete removal of cyanide was achieved in the final effluent.  相似文献   

18.
Municipal biosolids are typically not used on the steepest of forested slopes in the U.S. Pacific Northwest. The primary concern in using biosolids on steep slopes is movement of biosolids particles and soluble nutrients to surface waters during runoff events. We examined the pattern and extent of P and N runoff from a perennial stream draining a small, forested 21.4-ha watershed in western Washington before and after biosolids application. In this study, we applied biosolids at a rate of 13.5 Mg ha(-1) (700 kg N ha(-1) and 500 kg P ha(-1)) to 40% of the watershed following nearly 1.5 years of pre-application water sampling and 1.5 years thereafter. There was no evidence of direct runoff of P or N from biosolids into surface water. Elevated surface water discharge did not change the concentration of PO4-P, biologically available phosphorus (BAP), bioavailable particulate phosphorus (BPP), or total P nor did it affect the concentration-discharge relationship. Some instances of total P concentrations exceeding the USEPA surface water standard of 0.1 mg L(-1) were observed following biosolids application. However, total P in 27 Creek was predominately in particulate form and not labile, suggesting that detritus moving into the main creek channel and ephemeral drainage courses may be the principal P source. Ammonium N concentrations in runoff water were consistent before and after biosolids application, ranging from below detection limits (0.01 mg L(-1)) to 0.1 mg L(-1); no concentration-discharge relationship existed. Biosolids application changed the 27 Creek concentration-discharge relationship for NO3(-)-N. Before application, no relationship existed. Beginning nine months after biosolids application, increases in discharge were positively related to increases in NO3(-)-N concentrations. Nitrate concentrations in runoff following biosolids application were approximately 10 times less than the USEPA drinking water standard of 10 mg L(-1).  相似文献   

19.
The retention of chromium(III) from a 2000ppm chromium basic sulfate and tannery waste solution at pH 4.5 using modified hydroxy-aluminum bentonites (OH-Al bentonites) as adsorbents was studied. OH-Al bentonite was prepared by mixing clay with a hydrolyzed commercial chlorohydroxy Al solution. The modified Al bentonites were obtained by (a) a treatment with 0.5M sodium chloride and (b) a treatment with a Na-hexametaphosphate solution (HMP) after adding sodium chloride. The effect of heating the adsorbents at 100, 500, 700 and 800 degrees C on Cr retention as a function of time was also analyzed. Cr retention by modified OH-Al bentonite with HMP increased with time (up to 100mgCr/g) where modified OH-Al bentonite was twice that of untreated bentonite. The relatively high uptake of metal from the salt solution by modified OH-Al bentonite treated at 800 degrees C, in which a complete interlayer collapse occurred, indicated the importance of the contribution of external surface sites to the retention capacity. The maximum Cr uptake from a water waste was 24mg/g, due to interferences and different chromium species in the industrial solution.  相似文献   

20.
ABSTRACT: Declines in concentrations of dissolved lead occurred at nearly two-thirds of 306 locations on major U.S. rivers from 1974 to 1985. Declines in dissolved lead concentrations are statistically significant (p < 0.10) at approximately one-third of the sampling locations. Statistically significant increases in dissolved lead concentrations occurred at only 6 percent of the sites, but are clustered in the Texas-Gulf and Lower Mississippi regions. Possible explanations for the observed trends in lead concentrations are tested through comparisons with (1) records of lead discharges from major sources including leaded-gasoline consumption and municipal- and industrial-point source discharges, (2) trends in various water-quality constituents such as pH and total alkalinity, and (3) basin characteristics such as drainage area. Statistically significant declines in lead concentrations in streams and gasoline lead (i.e., the largest source of lead at these sites) are highly coincident for the 1979 to 1980 period at most sampling locations. The greatest amount of decline in gasoline lead occurred at sites showing statistically significant downtrends in stream concentrations of lead from 1974 to 1985. No more than 5 percent of the trends in stream lead are influenced by municipal- and industrial-point sources of lead. Factors that affect the transport of dissolved lead, including lead solubility, suspended sediment, and basin characteristics such as drainage basin size, are not significantly related to trends in dissolved lead. Trends in streamflow explain no more than 7 percent of the downtrends in concentrations of lead and may partly explain the frequent increases in lead concentrations in the Texas-Gulf and Lower Mississippi regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号