首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Nitrate and pesticide contamination of surface and groundwater has become a major problem in intensive farming regions in Europe, with nitrate concentrations reaching values above the standard defined in 2000 by the European Water Framework Directive. In the Seine basin, a major issue is the closure and abandonment of drinking-water wells, which force water managers and drinking-water producers to explore solutions for water resource protection. Organic farming has appeared as a credible alternative to conventional farming, and this study explores the potential of organic farming to reconcile agricultural production and water quality. On the basis of agricultural statistics, survey questionnaires and experimental data, the nitrogen soil surface balance (N-SSB) has been established at the scale of a small 104-km2 catchment (The Orgeval sub-basin), representative of the intensive cash crop farming in the Seine basin. The N-surplus for arable land in specialized organic cash crop systems has been found to be half that of current conventional systems (15 kg N ha−1 yr−1 versus 30 kg N ha−1 yr−1, respectively). The N-yield in organic systems is 21% lower than in conventional systems, but total fertilization (mostly symbiotic N fixation) is also 26% lower. Whereas 2–3 years of forage legume (e.g., alfalfa) as a starter crop of the typical 7- to 10-year diversified rotation builds up N soil fertility and helps prevent weeds without pesticides, the existence of an outlet for this fodder production is a limiting factor for the economic sustainability and the environmental benefits of these farming systems. Therefore, we explored the possibility of a reconnection of livestock and crop farming systems in the Orgeval catchment, a traditional dairy farming and Brie cheese production region. We calculated the N-SSB for this type of a reconnected livestock and cropping system and found a value very close to the specialized organic cash crop system with full utilization of fodder production, leading to profitable animal production, essentially as milk in this farm design. This reconnected system is compared with the estimated situation in 1955 before separation of plant and livestock production. Furthermore, the N-SSB values were converted into infiltrating sub-root concentrations and used as a boundary condition to a biogeochemical model. Organic cropping and organic reconnected livestock cropping systems result in a 50% reduction of surface water nitrate concentrations, a surface water quality 20% better than that reconstructed for 1955, with an overall higher protein production.  相似文献   

2.
Reducing phosphorus (P) in dairy diets may result in different types of manure with different chemical composition. Application of these manures to soils may affect the soil P solubility and lead to different environmental consequences. A laboratory incubation study determined the impact of 40 dairy manures on P dynamics in two soil types, Mattapex silt loam (Aquic Hapludult) and Kalmia sandy loam (Typic Hapludult). The manures were fecal samples of lactating cows, collected from commercial dairy farms located in Northeastern and Mid-Atlantic United States, with a wide range of dietary P concentrations (from 2.9 to 5.8 g P kg−1 feed dry matter, DM). Dried and ground fecal samples were mixed with surface horizon (0–15 cm) of soils at 150 kg P ha−1 and the mixtures were incubated at 25 °C for 21 days. At the end of incubation, water soluble P (WS-P) and Mehlich-3 P (M3-P) in the soil–manure mixtures were substantially higher than the control (soil alone) but were lower than the soils receiving fertilizer KH2PO4 at 150 kg P ha−1. Similarly, the relative extractability of P in soils amended with low- and high-P manures was always lower (<93%) than KH2PO4 suggesting that fertilizer P is more effective at increasing soil solution P in the short-term. Concentrations of WS-P or M3-P in soil–manure mixtures did not differ regardless of the source of manure (i.e. different farms and different diets). This suggests that when the same amount of P is added to soils through manure applications, the solubility or bioavailability of P in soils will be the same. However, P concentrations in feces correlate significantly with that in diets (r = 0.82**); and when the manures were grouped into high-P diets (averaging 5.1 g P kg−1) versus low-P diets (3.6 g P kg−1), manure P was 40% greater in the high-P group (10.6 g kg−1 DM) than the low-P group (7.6 g kg−1 DM). Thus, lowering excess P in diets would reduce P excretion in manures, P accumulation in soils, improve P balance on farms, require less area for land disposal, and decrease potential for P loss to waters.  相似文献   

3.
In many peri-urban areas of Southeast Asia, land use has been transformed from rice-based to more profitable vegetable-based systems in order to meet the increasing market demand. The major management related flows of nitrogen (N), phosphorus (P), potassium (K), copper (Cu) and zinc (Zn) were quantified over a 1-year period for intensive small-scale aquatic and terrestrial vegetable systems situated in two peri-urban areas of Hanoi City, Vietnam. The two areas have different sources of irrigation water; wastewater from Hanoi City and water from the Red River upstream of Hanoi. The first nutrient balances for this region and farming systems are presented. The main sources of individual elements were quantified and the nutrient use efficiency estimated. The environmental risks for losses and/or soil accumulation were also assessed and discussed in relation to long-term sustainability and health aspects.The primary source of nutrient input involved a combination of chemical fertilisers, manure (chicken) and irrigation water. A variable composition and availability of the latter two sources greatly influenced the relative magnitude of the final total loads for individual elements. Despite relatively good nutrient use efficiencies being demonstrated for N (46–86%) and K (66–94%), and to some extent also for P (19–46%), high inputs still resulted in substantial annual surpluses causing risks for losses to surface and ground waters. The surplus for N ranged from 85 to 882 kg ha−1 year−1, compared to P and K which were 109–196 and 20–306 kg ha−1 year−1, respectively. Those for Cu and Zn varied from 0.2 to 2.7 and from 0.6 to 7.7 kg ha−1 year−1, respectively, indicating high risk for soil accumulation and associated transfers through the food chain.Wastewater irrigation contributed to high inputs, and excess use of organic and chemical fertilisers represent a major threat to the soil and water environment. Management options that improve nutrient use efficiency represent an important objective that will help reduce annual surpluses. A sustainable reuse of wastewater for irrigation in peri-urban farming systems can contribute significantly to the nutrient supply (assuming low concentrations of potential toxic or hazardous substances in the water). Nutrient inputs need to be better related to the crop need, e.g. through better knowledge about the nutrient concentrations in the wastewater and improved management of the amount of irrigation water being applied.  相似文献   

4.
Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha−1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha−1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha−1 at MZ12 and 7 Mg C ha−1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha−1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha−1 day−1 in sole-maize and 23 to 83 kg ha−1 day−1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.  相似文献   

5.
Agroforestry is recognized as a strategy for soil carbon sequestration (SCS) under the afforestation/reforestation activities, but our understanding of soil carbon (C) dynamics under agroforestry systems (AFS) is not adequate. Although some SCS estimates are available, many of them lack scientific rigor. Several interrelated and site-specific factors ranging from agroecological conditions to system management practices influence the rate and extent of SCS under AFS, so that generalizations tend to become unrealistic. Furthermore, widely and easily adoptable methodologies are not available for estimating the SCS potential under different conditions. In spite of these, there is an increasing demand for developing “best-bet estimates” based on the current level of knowledge and experience. This document presents an attempt in that direction. The appraisal validates the conjecture that AFS can contribute to SCS, and presents indicative ranges of SCS under different AFS in the major agroecological regions of the tropics. The suggested values range from 5 to 10 kg C ha?1 in about 25 years in extensive tree-intercropping systems of arid and semiarid lands to 100–250 kg C ha?1 in about 10 years in species-intensive multistrata shaded perennial systems and homegardens of humid tropics.  相似文献   

6.
This paper provides an overview of the impacts of rural land use on lowland streamwater phosphorus (P) and nitrogen (N) concentrations and P loads and sources in lowland streams. Based on weekly water quality monitoring, the impacts of agriculture on streamwater P and N hydrochemistry were examined along a gradient of rural–agricultural land use, by monitoring three sets of ‘paired’ (near-adjacent) rural headwater streams, draining catchments which are representative of the major geology, soil types and rural/agricultural land use types of large areas of lowland Britain. The magnitude and timing of P and N inputs were assessed and the load apportionment model (LAM) was applied to quantify ‘continuous’ (point) source and ‘flow-dependent’ (diffuse) source contributions of P to these headwater streams. The results show that intensive arable farming had only a comparatively small impact on streamwater total phosphorus (TP loads), with highly consistent stream diffuse-source TP yields of ca. 0.5 kg-P ha?1 year?1 for the predominantly arable catchments with both clay and loam soils, compared with 0.4 kg-P ha?1 year?1 for low agricultural intensity grassland/woodland on similar soil types. In contrast, intensive livestock farming on heavy clay soils resulted in dramatically higher stream diffuse-source TP yields of 2 kg-P ha?1 year?1. The streamwater hydrochemistry of the livestock-dominated catchment was characterised by high concentrations of organic P, C and N fractions, associated with manure and slurry sources. Across the study sites, the impacts of human settlement were clearly identifiable with effluent inputs from septic tanks and sewage treatment works resulting in large-scale increases in soluble reactive phosphorus (SRP) loads and concentrations. At sites heavily impacted by rural settlements, SRP concentrations under baseflow conditions reached several hundred μg-P L?1. Load apportionment modelling demonstrated significant ‘point-source’ P inputs to the streams even where there were no sewage treatment works within the upstream catchment. This indicates that, even in sparsely populated rural headwater catchments, small settlements and even isolated groups of houses are sufficient to cause significant nutrient pollution and that septic tank systems serving these rural communities are actually operating as multiple point sources, rather than a diffuse input.  相似文献   

7.
Linkages between land management activities and stream water quality are reported for a 2480 ha catchment used for dairy farming, sheep–beef farming and forestry in Southland, New Zealand. Our approach was to reconcile measured loads of nutrients exported from the catchment with those estimated based on characterisation of farming practices within the catchment. The latter was based upon detailed surveys of farm practices and soil quality. Monthly stream monitoring showed that median nutrient (N and P), sediment and faecal bacteria concentrations exceeded guidelines recommended for surface waters. Measured specific yields for suspended sediment (SS), total N (TN) and phosphorus (P) discharged from the catchment were 58, 8.2 and 0.43 kg ha−1 year−1, respectively, for the 2001–2005 monitoring period. In comparison, model estimates of N and P losses in drainage and overland flow from farms in the catchment were 10.1 and 0.59 kg ha−1 year−1, respectively. Field measurements, farm management surveys and farm systems modeling have identified some land management practices that appear to be key sources of many of these pollutants. These sources include subsurface drainage systems (including the preferential flow of irrigated effluent through these soils), overland flow from the heavy soils used for dairy farming in the catchment and the practice of intensively wintering cows on forage crops. Modeling suggests that a significant improvement in catchment water quality could be achieved through the implementation of targeted best management practices (BMPs) on dairy farms in the catchment. These include (i) covered feedpad wintering systems for controlling N losses, (ii) nitrification inhibitor use on milking platforms, (iii) deferred irrigation and low rate application of farm dairy effluent and (iv) limiting soil Olsen P to economically optimum levels. The adoption of these BMPs will, in part, depend on their economic viability. This paper therefore presents a double-bottom-line analysis (i.e. environmental and economic) of some of these BMPs and discusses their potential to cost-effectively deliver improved water quality in the Bog Burn catchment.  相似文献   

8.
An extensive knowledge of the temporal variability of soil fertility parameters and how this variation affects the environment is imperative to a wide range of disciplines within agricultural science for optimal crop production and ecosystem preservation. This paper examines the temporal variability of soil pH, organic matter (OM), cation exchange capacity (CEC), total nitrogen (TN), total phosphorus (TP), available phosphorus (PAv), and available potassium (KAv) on Cambosols (Entisols) (n = 179) and Anthrosols (Inceptisols) (n = 95) in Zhangjiagang County, China from 1980 to 2004. Nutrient input was monitored from 1983 to 2004. Annual N fertilizer rates were significantly different during three periods (1983–1989, 1989–1999, 1999–2004), where annual rates increased significantly after 1989 and then decreased after 1999. Annual P fertilizer rates were significantly different during two periods (1983–1993, 1993–2004) where annual rates increased after 1993. No change was found in K fertilizer rates. Soil pH marginally increased by 0.14 units in Cambosols, but significantly decreased by 1.02 units in Anthrosols. OM, CEC, and TN increased in both soil orders an average of 2.15 g kg?1, 1.6 cmol kg?1, and 0.21 g kg?1, respectively. TP decreased in Anthrosols by 70 mg kg?1, PAv increased in Cambosols by 4.83 mg kg?1, and KAv decreased in Cambosols by 15 mg kg?1. Fertilizer input rates are causing nutrient imbalances, contributing to acidification in Anthrosols, and decreasing C/N ratios. Nutrient loading of N and deficiency of K is also a potential problem in the area. Efforts should be made to readjust soil nutrient inputs to reach an optimal, sustainable level.  相似文献   

9.
Nutrient balances aggregated at the continental, national, or regional levels for African farming systems are usually reported as strongly negative. At the landscape or farm scale, the most commonly reported variability is the gradient of decreasing soil fertility from intensively managed “home” fields to more extensively managed “bush” fields. Case study evidence from an agro-pastoral community of southern Mali’s cotton zone showed that “home” and “bush” fields differed significantly in nutrient balances and soil fertility status but that inter-household differences related to household practice and social factors were even more important.Plot and household-level soil nutrient balances were calculated in 1996–1997 from participatory exercises such as resource flow mapping, participant observation, and soil sampling. The overall community-level nutrient balances averaged −9.2 kg N ha−1, +0.8 kg P ha−1, and −3.4 kg K ha−1, with significant inter-household variation. Soil analysis confirmed significant variation in soil nutrient status at both the landscape and plot levels. Comparing the scale and patterns of input use inequality using Gini coefficients showed the range of coefficients attributable to household behaviours matched or surpassed those attributable to distance factors alone. Input use intensity declined with increasing distance from nutrient sources but field level nutrient balances were better explained by household practice than by distance. Systemic differences in household asset ownership, use, and resource allocation behaviour suggested that much of the diversity seen in the nutrient balances and soil analyses was due to persistent inter-household inequality and the consequent exchanges of agro-pastoral resources. Inter-household negotiations for inputs (such as exchanges of manure and carts) and household-level decisions about input allocation created, exploited, and reinforced a mosaic of soil fertility “hotspots” surrounded by less fertile and less intensively managed patches.  相似文献   

10.
Soil tillage and straw management are both known to affect soil organic matter dynamics. However, it is still unclear whether, or how, these two practices interact to affect soil C storage, and data from long term studies are scarce. Soil C models may help to overcome some of these problems. Here we compare direct measurements of soil C contents from a 9 year old tillage experiment to predictions made by RothC and a cohort model. Soil samples were collected from plots in an Irish winter wheat field that were exposed to either conventional (CT) or shallow non-inversion tillage (RT). Crop residue was removed from half of the RT and CT plots after harvest, allowing us to test for interactive effects between tillage practices and straw management. Within the 0–30 cm layer, soil C contents were significantly increased both by straw retention and by RT. Tillage and straw management did not interact to determine the total amount of soil C in this layer. The highest average soil C contents (68.9 ± 2.8 Mg C ha?1) were found for the combination of RT with straw incorporation, whereas the lowest average soil C contents (57.3 ± 2.3 Mg C ha?1) were found for CT with straw removal. We found no significant treatment effects on soil C contents at lower depths. Both models suggest that at our site, RT stimulates soil C storage largely by decreasing the decomposition of old soil C. Extrapolating our findings to the rest of Ireland, we estimate that RT will lead to C mitigation ranging from 0.18 to 1.0 Mg C ha?1 y?1 relative to CT, with the mitigation rate depending on the initial SOC level. However, on-farm assessments are still needed to determine whether RT management practices can be adopted under Irish conditions without detrimental effects on crop yield.  相似文献   

11.
In tropical mountainous regions of South East Asia, intensive cultivation of annual crops on steep slopes makes the area prone to erosion resulting in decreasing soil fertility. Sediment deposition in the valleys, however, can enhance soil fertility, depending on the quality of the sediments, and influence crop productivity. The aim of the study was to assess (i) the spatio-temporal variation in grain yield along two rice terrace cascades in the uplands of northern Viet Nam, (ii) possible linkage of sediment deposition with the observed variation in grain yield, and (iii) whether spatial variation in soil water or nitrogen availability influenced the obtained yields masking the effect of inherent soil fertility using carbon isotope (13C) discrimination and 15N natural abundance techniques. In order to evaluate the impact of seasonal conditions, fertilizer use and sediment quality on rice performance, 15N and 13C stable isotope compositions of rice leaves and grains taken after harvest were examined and combined with soil fertility information and rice performance using multivariate statistics. The observed grain yields for the non-fertilized fields, averaged over both cascades, accounted for 4.0 ± 1.4 Mg ha?1 and 6.6 ± 2.5 Mg ha?1 in the spring and summer crop, respectively, while for the fertilized fields, grain yields of 6.5 ± 2.1 Mg ha?1 and 6.9 ± 2.1 Mg ha?1 were obtained. In general, the spatial variation of rice grain yield was strongly and significantly linked to sediment induced soil fertility and textural changes, such as soil organic carbon (r 0.34/0.77 for Cascades 1 and 2, respectively) and sand fraction (r ?0.88/?0.34). However, the observed seasonal alteration in topsoil quality, due to sediment deposition over two cropping cycles, was not sufficient to fully account for spatial variability in rice productivity. Spatial variability in soil water availability, assessed through 13C discrimination, was mainly present in the spring crop and was linearly related to the distance from the irrigation channel, and overshadowed in Cascade 2 the expected yield trends based on sediment deposition. Although δ15N signatures in plants indicated sufficient N uptake, grain yields were not found to be always significantly influenced by fertilizer application. These results showed the importance of integrating sediment enrichment in paddy fields within soil fertility analysis. Furthermore, where the effect of inherent soil fertility on rice productivity is masked by soil water or nitrogen availability, the use of 13C and 15N stable isotopes and its integration with conventional techniques showed potential to enhance the understanding of the influence of erosion – sedimentation and nutrient fluxes on crop productivity, at toposequence level.  相似文献   

12.
Excessive loss of fine-grained sediment to rivers is widely recognised as a global environmental problem. To address this issue, policy teams and catchment managers require an estimate of the ‘gap’ requiring remediation, as represented by the excess above ‘background’ losses. Accordingly, recent work has estimated the exceedance of modern ‘background’ sediment delivery to rivers at national scale across England and Wales due to (i) current agricultural land cover, cropping and stocking, and (ii) current land use corrected for the uptake of on-farm mitigation measures. This sectoral focus recognises that, nationally, agriculture has been identified as the principal source of fine sediment loss to the aquatic environment. Two estimates of modern ‘background’ sediment loss, based on paleolimnological evidence, were used in the analysis; the target modern ‘background’ (TMBSDR) and maximum modern ‘background’ (MMBSDR) sediment delivery to rivers. For individual (n = 4485) non-coastal water bodies, the sediment ‘gap’ in excess of TMBSDR and MMBSDR, due to current land cover, cropping and stocking, was estimated to range up to 1368 kg ha−1 yr−1 (median 61 kg ha−1 yr−1) and 1321 kg ha−1 yr−1 (median 19 kg ha−1 yr−1), respectively. The respective ranges in conjunction with current land cover, cropping and stocking but corrected for the potential impact of on-farm sediment mitigation measures were up to 1315 kg ha−1 yr−1 (median 50 kg ha−1 yr−1) and 1269 kg ha−1 yr−1 (median 8 kg ha−1 yr−1). Multiplication of the estimates of excess sediment loss corrected for current measure uptake, above TMBSDR and MMBSDR, with estimated maximum unit damage costs for the detrimental impacts of sediment pollution on ecosystem goods and services, suggested respective water body ranges up to 495 £ ha−1 yr−1 and 478 £ ha−1 yr−1. Nationally, the total loss of sediment in excess of TMBSDR was estimated at 1,389,818 t yr−1 equating to maximum environmental damage costs of £523 M yr−1, due to current structural land use, compared to 1,225,440 t yr−1 equating to maximum damage costs of £462 M yr−1 due the uptake of on-farm sediment control measures. The corresponding total loss of sediment in excess of MMBSDR was estimated at 1,038,764 t yr−1 equating to maximum damage costs of £462 M yr−1, compared with 890,146 t yr−1 and £335 M yr−1 correcting excess agricultural sediment loss for current implementation of abatement measures supported by policy instruments. This work suggests that the current uptake of sediment control measures on farms across England and Wales is delivering limited benefits in terms of reducing loadings to rivers and associated environmental damage costs.  相似文献   

13.
Soil organic C (SOC) and total soil N (TSN) sequestration estimates are needed to improve our understanding of management influences on soil fertility and terrestrial C cycling related to greenhouse gas emission. We evaluated the factorial combination of nutrient source (inorganic, mixed inorganic and organic, and organic as broiler litter) and forage utilization (unharvested, low and high cattle grazing pressure, and hayed monthly) on soil-profile distribution (0–150 cm) of SOC and TSN during 12 years of pasture management on a Typic Kanhapludult (Acrisol) in Georgia, USA. Nutrient source rarely affected SOC and TSN in the soil profile, despite addition of 73.6 Mg ha?1 (dry weight) of broiler litter during 12 years of treatment. At the end of 12 years, contents of SOC and TSN at a depth of 0–90 cm under haying were only 82 ± 5% (mean ± S.D. among treatments) of those under grazed management. Within grazed pastures, contents of SOC and TSN at a depth of 0–90 cm were greatest within 5 m of shade and water sources and only 83 ± 7% of maximum at a distance of 30 m and 92 ± 14% of maximum at a distance of 80 m, suggesting a zone of enrichment within pastures due to animal behavior. During 12 years, the annual rate of change in SOC (0–90 cm) followed the order: low grazing pressure (1.17 Mg C ha?1 year?1) > unharvested (0.64 Mg C ha?1 year?1) = high grazing pressure (0.51 Mg C ha?1 year?1) > hayed (?0.22 Mg C ha?1 year?1). This study demonstrated that surface accumulation of SOC and TSN occurred, but that increased variability and loss of SOC with depth reduced the significance of surface effects.  相似文献   

14.
Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha?1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P  0.05) at the highest fertilizer nitrogen treatment (2.16 ± 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha?1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.  相似文献   

15.
To reduce the environmental burden of agriculture, suitable methods to comprehend and assess the impact on natural resources are needed. One of the methods considered is the life cycle assessment (LCA) method, which was used to assess the environmental impacts of 18 grassland farms in three different farming intensities — intensive, extensified, and organic — in the Allgäu region in southern Germany. Extensified and organic compared with intensive farms could reduce negative effects in the abiotic impact categories of energy use, global warming potential (GWP) and ground water mainly by renouncing mineral nitrogen fertilizer. Energy consumption of intensive farms was 19.1 GJ ha−1 and 2.7 GJ t−1 milk, of extensified and organic farms 8.7 and 5.9 GJ ha−1 along with 1.3 and 1.2 GJ t−1 milk, respectively. Global warming potential was 9.4, 7.0 and 6.3 CO2-equivalents ha−1 and 1.3, 1.0 and 1.3 CO2-equivalents t−1 milk for the intensive, extensified and organic farms, respectively. Acidification calculated in SO2-equivalents was high, but the extensified (119 kg SO2 ha−1) and the organic farms (107 kg SO2 ha−1) emit a lower amount compared with the intensive farms (136 kg SO2 ha−1). Eutrophication potential computed in PO4-equivalents was higher for intensive (54.2 kg PO4 ha−1) compared with extensified (31.2 kg PO4 ha−1) and organic farms (13.5 kg PO4 ha−1). Farmgate balances for N (80.1, 31.4 and 31.1 kg ha−1) and P (5.3, 4.5 and −2.3 kg ha−1) for intensive, extensified and organic farms, respectively, indicate the different impacts on ground and surface water quality. Analysing the impact categories biodiversity, landscape image and animal husbandry, organic farms had clear advantages in the indicators number of grassland species, grazing cattle, layout of farmstead and herd management, but indices in these categories showed a wide range and are partly independent of the farming system.  相似文献   

16.
Dietary adjustments have been suggested as a means to reduce N losses from dairy systems. Differences in fertilizing value of dairy slurry as a result of dietary adjustments were evaluated in a 1-year grassland experiment and by long-term modelling. Slurry composition of non-lactating dairy cows was manipulated by feeding diets with extreme high and low levels of dietary protein and energy. C:Ntotal ratio of the produced slurries ranged from 5.1 to 11.4. To evaluate their short-term fertilizer N value, the experimental slurries (n = 8) and slurries from commercial farms with variable composition (n = 4), were slit-injected in two grassland fields on the same sandy soil series in the north of The Netherlands (53°10′N, 6°04′E), with differences in sward age and ground water level. The recently established grassland field (NEW) was characterized by lower soil OM, N and moisture contents, less herbs and more modern grass varieties compared to the older grassland field (OLD). Slurry was applied in spring (100 kg N ha−1) and after the first cut (80 kg N ha−1) while in total four cuts were harvested. Artificial fertilizer N treatments were included in the experiment to calculate the mineral fertilizer equivalent (MFE) of slurry N. The OLD field showed a higher total N uptake whereas DM yields were similar for the two fields. Average MFE of the slurries on the OLD field (47%) was lower than on the NEW field (56%), probably as a result of denitrification of slurry N during wet conditions in spring. Slurries from high crude protein diets showed a significantly higher MFE (P < 0.05) compared to low crude protein diets. No significant differences in MFE were observed between slurries from high and low energy diets. On both fields, MFE appeared to be positively related to the ammonium content (P < 0.001) and negatively to the C:Ntotal ratio of the slurry DM (P = 0.001). Simulation of the effect of long-term annual application of 180 kg N ha−1 with highest and lowest C:Ntotal ratio suggested that both slurries would lead to an increase in annual soil N mineralization. Both soil N mineralization and SOC appeared to be substantially higher in equilibrium state for the slurry with the highest C:Ntotal ratio. It is concluded that in a situation with slit-injection, the reduced first-year N availability of slurry with a high C:Ntotal ratio as observed in the grassland experiment will only be compensated for by soil N mineralization on the very long term.  相似文献   

17.
The largest areas of acid sulphate (AS) soils in Europe are located in Finland, where 67,000–130,000 ha of AS soils are in agricultural use. In addition to their acidifying effects on waters, AS soils might be a significant source of greenhouse gases. In this pilot research, carbon and nitrogen content and microbial activity were studied in an AS and a non-AS soil. Large carbon and nitrogen stocks (110 Mg Corg ha?1 and 15 Mg Ntot ha?1) as well as high substrate induced respiration (33 μg CO2–C g?1h?1) were found in the C horizons of the AS soil but not in the non-AS soil. High microbial activity in these horizons of the AS soil was further confirmed by the measurement of dehydrogenase activity, basal respiration, the numbers of culturable bacterial cells, and the ratio of culturable to total numbers of cells. Still, the denitrifying enzyme activity was very low in the anaerobic horizons of the AS soil, indicating the prevalence of microbes other than denitrifiers. We suspect that the microbial community originated with the genesis of AS soil and has been supported by the large stocks of accumulated carbon and mineral nitrogen in the C horizons. If these permanently water-saturated subsoils are exposed to oxygen and their microbial activity consequently increases, large carbon and nitrogen stocks are likely to be mobilised, resulting in increased emission of greenhouse gases. Additional studies of boreal AS soils are needed to assess their potential contribution to increases in greenhouse gas fluxes at the local, regional, and global scales.  相似文献   

18.
RothC and Century are two of the most widely used soil organic matter (SOM) models. However there are few examples of specific parameterisation of these models for environmental conditions in East Africa. The aim of this study was therefore, to evaluate the ability of RothC and the Century to estimate changes in soil organic carbon (SOC) resulting from varying land use/management practices for the climate and soil conditions found in Kenya. The study used climate, soils and crop data from a long term experiment (1976–2001) carried out at The Kabete site at The Kenya National Agricultural Research Laboratories (NARL, located in a semi-humid region) and data from a 13 year experiment carried out in Machang’a (Embu District, located in a semi-arid region). The NARL experiment included various fertiliser (0, 60 and 120 kg of N and P2O5 ha−1), farmyard manure (FYM—5 and 10 t ha−1) and plant residue treatments, in a variety of combinations. The Machang’a experiment involved a fertiliser (51 kg N ha−1) and a FYM (0, 5 and 10 t ha−1) treatment with both monocropping and intercropping. At Kabete both models showed a fair to good fit to measured data, although Century simulations for treatments with high levels of FYM were better than those without. At the Machang’a site with monocrops, both models showed a fair to good fit to measured data for all treatments. However, the fit of both models (especially RothC) to measured data for intercropping treatments at Machang’a was much poorer. Further model development for intercrop systems is recommended. Both models can be useful tools in soil C predictions, provided time series of measured soil C and crop production data are available for validating model performance against local or regional agricultural crops.  相似文献   

19.
Buffer strips are an efficient and economical way to reduce agricultural nonpoint source pollution. Local researches are necessary to gain information on buffer performance, with particular emphasis on narrow buffers. The effect of a 6 m buffer strip (BS) in reducing runoff, suspended solids and nutrients from a field growing maize, winter wheat and soybean was assessed in a field experiment conducted in North-East Italy during 1998–2001. The BS was composed of two rows of regularly alternating trees (Platanus hybrida Brot.) and shrubs (Viburnum opulus L.), with grass (Festuca arundinacea L.) in the inter-rows.The BS reduced total runoff by 78% compared to no-BS, in which cumulative runoff depth was 231 mm over 4 years. With no-BS runoff appeared to be influenced mostly by total rainfall, while with BS maximum rainfall intensity was more important. The filtering effect of the BS reduced total suspended solids (TSS), particularly after the second year, when the median yearly concentrations ranged from 0.28 to 0.99 mg L−1 and were smaller than 0.14 mg L−1, with no-BS and with BS respectively. The combination of lower concentrations and runoff volumes significantly reduced TSS losses from 6.9 to 0.4 t ha−1 over the entire period.A tendency to increased concentrations of all forms of N (total, nitrate and ammonium) while passing through the BS was observed, but total N losses were reduced from 17.3 to 4.5 kg ha−1 in terms of mass balance. On the contrary, P concentrations were unmodified (soluble P), or lowered (total P) by the BS, reducing total losses by about 80%. The effect on total P, composed mainly of sediment-bound forms, was related to particulate settling when passing through the BS.A numerical index (Eutrophic Load Index), integrating water quality and runoff volumes, was created to evaluate the eutrophication risk of runoff with or without the BS. It showed that the BS effect was mostly due to a reduction of runoff volumes rather than improving the overall water quality.  相似文献   

20.
Abandonment of marginal agricultural areas with subsequent secondary succession is a widespread type of land use change in Mediterranean and mountain areas of Europe, leading to important environmental consequences such as change in the water balance, carbon cycling, and regional climate. Paired eddy flux measurement design with grassland site and tree/shrub encroached site has been set-up in the Slovenian Karst (submediterranean climate region) to investigate the effects of secondary succession on ecosystem carbon cycling. The invasion of woody plant species was found to significantly change carbon balance shifting annual NEE from source to an evident sink. According to one year of data succession site stored ?126 ± 14 g C m?2 y?1 while grassland site emitted 353 ± 72 g C m?2 y?1. In addition, the seasonal course of CO2 exchange differed between both succession stages, which can be related to differences in phenology, i.e. activity of prevailing plant species, and modified environmental conditions within forest fragments of the invaded site. Negligible effect of instrument heating was observed which proves the Burba correction in our ecosystems unnecessary. Unexpectedly high CO2 emissions and large disagreement with soil respiration especially on the grassland site in late autumn indicate additional sources of carbon which cannot be biologically processes, such as degassing of soil pores and caves after rain events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号