首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Practice review of five bioreactor/recirculation landfills   总被引:1,自引:0,他引:1  
Five landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor and recirculation landfills in North America from conventional landfills. The bioreactor and recirculation landfills were found to function in much the same manner as conventional landfills, with designs similar to established standards for waste containment facilities. Leachate generation rates, leachate depths and temperatures, and liner temperatures were similar for landfills operated in a bioreactor/recirculation or conventional mode. Gas production data indicate accelerated waste decomposition from leachate recirculation at one landfill. Ambiguities in gas production data precluded a definitive conclusion that leachate recirculation accelerated waste decomposition at the four other landfills. Analysis of leachate quality data showed that bioreactor and recirculation landfills generally produce stronger leachate than conventional landfills during the first two to three years of recirculation. Thereafter, leachate from conventional and bioreactor landfills is similar, at least in terms of conventional indicator variables (BOD, COD, pH). While the BOD and COD decreased, the pH remained around neutral and ammonia concentrations remained elevated. Settlement data collected from two of the landfills indicate that settlements are larger and occur much faster in landfills operated as bioreactors or with leachate recirculation. The analysis also indicated that more detailed data collection over longer time periods is needed to draw definitive conclusions regarding the effects of bioreactor and recirculation operations. For each of the sites in this study, some of the analyses were limited by sparseness or ambiguity in the data sets.  相似文献   

2.
Anammox: an option for ammonium removal in bioreactor landfills   总被引:1,自引:0,他引:1  
Experiments carried out in bioreactor landfill simulators demonstrated that more than 40% of the total N was transferred into the liquid and gas phases during the incubation period of 380 days. Ammonium, an end product of protein degradation and important parameter to consider during landfill closure, tends to accumulate up to inhibitory levels in the leachate of landfills especially in landfills with leachate recirculation. Most efforts to remove ammonium from leachate have been focused on ex situ and partial in situ methods such as nitrification, denitrification and chemical precipitation. Besides minimal contributions from other N-removal processes, Anammox (Anaerobic Ammonium Oxidation) bacteria were found to be active within the simulators. Anammox is considered to be an important contributor to remove N from the solid matrix. However, it was unclear how the necessary nitrite for Anammox metabolism was produced. Moreover, little is known about the nature of residual nitrogen in the waste mass and possible mechanisms to remove it. Intrusion of small quantities of O2 is not only beneficial for the degradation process of municipal solid waste (MSW) in bioreactor landfills but also significant for the development of the Anammox bacteria that contributed to the removal of ammonium. Volatilisation and Anammox activity were the main N removal mechanisms in these pilot-scale simulators. The results of these experiments bring new insights on the behaviour, evolution and fate of nitrogen from solid waste and present the first evidence of the existence of Anammox activity in bioreactor landfill simulators.  相似文献   

3.
Sustainable disposal of municipal solid waste (MSW) requires assurance that contaminant release will be minimized or prevented within a reasonable time frame before the landfill is abandoned so that the risk of contamination release is not passed to future generations. This could be accomplished through waste acceptance criteria such as those established by the European Union (EU) that prohibit land disposal of untreated organic matter. In the EU, mechanical, biological and/or thermal pretreatment of MSW is therefore necessary prior to landfilling which is complicated and costly. In other parts of the world, treatment within highly engineered landfills is under development, known as bioreactor landfills. However, the completed bioreactor landfill still contains material, largely nonbiodegradable carbon and ammonia that may be released to the environment over the long-term. This paper provides a conceptual analysis of an approach to ensure landfill sustainability by the rapid removal of these remaining materials, leachate treatment and recirculation combined with aeration. The analysis in this paper includes a preliminary experimental evaluation using real mature leachate and waste samples, a modeling effort using a simplified mass balance approach and input parameters from real typical bioreactor cases, and a cost estimate for the suggested treatment method.  相似文献   

4.
The feasibility of simultaneous nitrification and denitrification in a bioreactor landfill with limited aeration was assessed. Three column reactors, simulating bioreactor landfill operations under anaerobic condition (as reference), intermittent forced aeration and enhanced natural aeration were hence established, where aerated columns passed through two phases, i.e., fresh landfill and well-decomposed landfill. The experimental results show that limited aeration decreased nitrogen loadings of leachate distinctly in the fresh landfill. In the well-decomposed landfill, the NH(4)(+)-N of the input leachate could be nitrified completely in the aerated landfill columns. The nitrifying loadings of the column cross section reached 7.9 g N/m(2)d and 16.9 g N/m(2)d in the simulated landfill columns of intermittent forced aeration and enhanced natural aeration, respectively. The denitrification was influenced by oxygen distribution in the landfill column. Intermittent existence of oxygen in the landfill with the intermittent forced aeration was favorable to denitrify the NO(2)(-)-N and NO(3)(-)-N, indicated by the high denitrification efficiency (>99%) under the condition of BOD(5)/TN of more than 5.4 in leachate; locally persistent existence of oxygen in the landfill with enhanced natural aeration could limit the denitrification, indicated by relatively low denitrification efficiency of about 75% even when the BOD(5)/TN in leachate had an average of 7.1.  相似文献   

5.
A three-compartment system, comprising a landfill column with fresh municipal solid waste, a column with a well-decomposed refuse layer as methane producer, and a sequential batch reactor as ex situ nitrifying reactor, was employed to remove nitrogen from municipal solid waste leachate. Since food waste comprised a major portion of refuse collected in Shanghai, an intense hydrolysis reaction occurred and caused the rapid accumulation of ammonia nitrogen (NH(3)-N) and total organic carbon in the leachate. This paper discusses the role of the three mentioned units and the design and operation of the proposed system. With most NH(3)-N being converted to nitrite nitrogen (NO(2)(-)-N) or nitrate nitrogen (NO(3)(-)-N) by the nitrifying reactor, and with the well-decomposed refuse layer transforming most dissolved organic compounds to CO(2), carbonates and methane, it was found that the fresh refuse column could efficiently denitrify the hydrolyzed nitrogen to N(2) gas. The role of the three mentioned units and comments on the design and operation of the proposed system are also discussed.  相似文献   

6.
The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past decade. Because simulating moisture balance and flow is more critical in such landfills than in dry landfills, researchers have developed methods to address this problem using the hydrologic evaluation of landfill performance (HELP) model. This paper discusses three methods of applying the HELP model to simulate the percolation of liquids added to landfill waste: the leachate recirculation feature (LRF), the subsurface inflow (SSI) feature, and additional rainfall to mimic liquids addition. The LRF is simple to use but may not be able to bring the landfill to bioreactor conditions. The SSI feature provides a convenient user interface for modeling liquids addition to each layer. The additional rainfall feature provides flexibility to the model, allowing users to estimate the leachate generation rate and the leachate head on bottom liner associated with daily variation in the liquids addition rate. Additionally, this paper discusses several issues that may affect the HELP model, such as the time of model simulation, layers of liquids addition, and the limitations of the HELP model itself. Based on the simulation results, it is suggested that the HELP model should be run over an extended period of time after the cessation of liquids addition in order to capture the peak leachate generation rate and the head on the liner (HOL). From the perspectives of leachate generation and the HOL, there are few differences between single-layer injection and multiple-layer injection. This paper also discusses the limitations of using the HELP model for designing and permitting bioreactor landfills.  相似文献   

7.
Pilot-scale experiment on anaerobic bioreactor landfills in China   总被引:1,自引:0,他引:1  
Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.  相似文献   

8.
Nitrogen management in bioreactor landfills   总被引:17,自引:0,他引:17  
One scenario for long-term nitrogen management in landfills is ex situ nitrification followed by denitrification in the landfill. The objective of this research was to measure the denitrification potential of actively decomposing and well decomposed refuse. A series of 10-l reactors that were actively producing methane were fed 400 mg NO3-N /l every 48 h for periods of 19-59 days. Up to 29 nitrate additions were either completely or largely depleted within 48 h of addition and the denitrification reactions did not adversely affect the leachate pH. Nitrate did inhibit methane production, but the reactors recovered their methane-producing activity with the termination of nitrate addition. In well decomposed refuse, the nitrate consumption rate was reduced but was easily stimulated by the addition of either acetate or an overlayer of fresh refuse. Addition of acetate at five times the amount required to reduce nitrate did not lead to the production of NH4+ by dissimilatory nitrate reduction. The most probable number of denitrifying bacteria decreased by about five orders of magnitude during refuse decomposition in a reactor that did not receive nitrate. However, rapid denitrification commenced immediately with nitrate addition. This study shows that the use of a landfill as a bioreactor for the conversion of nitrate to a harmless byproduct, nitrogen gas, is technically viable.  相似文献   

9.
In today’s context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON–ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.  相似文献   

10.
The "LaNDy" model (landfill nitrogen dynamics model) is a new mathematical tool for the evaluation of the long-term behaviour of nitrogen in mechanical-biologically pretreated (MBP) waste. LaNDy combines a hydraulic model based on RICHARD's equation with one-dimensional heat flow in landfills, kinetics of biological degradation, gas diffusion, nitrification and denitrification. A suitable temperature-dependent N mineralisation sub-model was based on numerous data from the literature and own LSR-experiments. With the "nitrification modus" of the LaNDy model, kinetic data of nitrification, thermodynamic data of denitrification and diffusion characteristics of gaseous components (especially of oxygen and methane) are used as an additional input for the preliminary calculation of the long-time impact of nitrification and denitrification. Examples of predicted temperature distribution and leachate ammonium concentrations, using different landfill size, age of the landfill (10 to approximately 100 a) and hydraulic conductivity of the MBP waste, are presented in this paper.  相似文献   

11.
Landfilling is a fundamental step in any waste management strategy, but it can constitute a hazard for the environment for a long time. The need to protect the environment from potential landfill emissions makes risk assessment a decision tool of extreme necessity. The heterogeneity of wastes and the complexity of physical, chemical and biological processes that occur in the body of a landfill need specific procedures in order to evaluate the groundwater risk for the environment. Given the complexity of the composition of landfill leachates, the exact contribution of each potential toxic substance cannot be known precisely. Some reference contaminants that constitute the hazard (toxicity) of leachate have to be found to perform the risk assessment. A preliminary ecotoxicological investigation with luminescent bacteria has been carried out on different leachates from traditional and sustainable landfills in order to rank the chemicals that better characterize the leachate (heavy metals, ammonia and dissolved organic content). The attention has been focused on ammonia because it is present in high concentration and can last for centuries and can seriously contaminate the groundwater. The results showed that the toxicity of the leachate might reliably depend on the ammonia concentration and that the leachate toxicity is considerably lower in sustainable landfills where the ammonia had been degraded. This has an important consequence because if the containment system fails (as usually occur within 30-50yr), the risk of groundwater contamination will be calculated easier only in terms of the probability that the ammonia concentration is higher than a reference concentration.  相似文献   

12.
Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.  相似文献   

13.
Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m3, landfill: 80,000 m3), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore water participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.  相似文献   

14.
Treatment of municipal solid waste (MSW) landfill leachate generally results in low percentages of nutrient removal due to the high concentration and accumulation of refractory compounds. For this reason, individual physical, chemical and biological processes have been used for the treatment of raw landfill leachate and sometimes for the mixture of domestic wastewater and landfill leachate. In this work, the possibility of treating landfill leachate was tested in a bench-scale pilot plant by a two-step method combining adsorption and coagulation-flocculation. Zeolite synthesized from coal fly ash, a by-product of coal-fired power stations, was used in this study both as a decantation aid reagent and as an adsorbent of COD and NH4-N. The coagulation-flocculation step was performed by the use of aluminium sulphate and a polyelectrolyte (ACTIPOL A-401). The leachate was collected directly from a storage unit of the organic fraction of MSW, before it was composted. For this reason the raw leachate was diluted before treatment. The sludge was recirculated to enhance the removal efficiency of nutrients as well as to optimize flocculant saving and to decrease sludge production. The results showed that it is possible to remove 43%, 53% and 82% of COD, NH4-N, and suspended solids, respectively. Therefore, this method may be an alternative for ammonium removal, as well as a suitable pre- or post-treatment step, in combination with other processes in order to meet regulatory limits.  相似文献   

15.
The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment.  相似文献   

16.
The Mountain View controlled landfill project was undertaken in response to the need to optimize energy recovery from landfills, accelerate stabilization, and control gas migration and explosion hazards in the vicinity of landfills. The major objectives of the project were (1) to test the hypothesis that both yield and rate of landfill methanogenesis can be increased by controlling specific conditions within a landfill bioreactor, and (2) to quantify landfill gas production in a field-scale experiment with complete gas recovery so that a measure of landfill gas recovery efficiency can be established. Of particular importance for the design of the field experiment were the synergistic effects of moisture content, seed, and buffer additions on methanogenesis in landfilled municipal solid wastes. The experiment included six landfill cells considered as representative of actual landfills. The effect of moisture content, seed, and buffer was studied in terms of the water content of the refuse additions mixture on a total weight basis, the ratio of organic sludge dry solids to refuse dry solid (seed/nutrient), and the ratio of buffer solids to water present in the refuse/additions mixture.  相似文献   

17.
Modelling leachate quality and quantity in municipal solid waste landfills.   总被引:1,自引:0,他引:1  
The operational phase of landfills may last for 20 years or more. Significant changes in leachate quality and generation rate may occur during this operational period. A mathematical model has been developed to simulate the landfill leachate behaviour and distributions of moisture and leachate constituents through the landfill, taking into consideration the effects of time-dependent landfill development on the hydraulic characteristics of waste and composition of leachate. The model incorporates governing equations that describe processes influencing the leachate production and biochemical processes taking place during the stabilization of wastes, including leachate flow, dissolution, acidogenesis and methanogenesis. To model the hydraulic property changes occurring during the development stage of the landfills, a conceptual modelling approach was proposed. This approach considers the landfill to consist of cells or columns of cells, which are constructed at different times, and considers each cell in the landfill to consist of several layers. Each layer is assumed to be a completely mixed reactor containing uniformly distributed solid waste, moisture, gases and micro-organisms. The use of the proposed conceptual model enables the incorporation of the spatial changes in hydraulic properties of the landfill into the model and also makes it possible to predict the spatial and temporal distributions of moisture and leachate constituents. The model was calibrated and partially verified using leachate data from Keele Valley Landfill in Ontario, Canada and data obtained from the literature. Ranges of values were proposed for model parameters applicable for real landfill conditions.  相似文献   

18.
A probabilistic approach is presented for estimating the release of contaminants by leaching, when wastes are being considered for disposal in a class of landfills but the specific landfill disposal site is uncertain. A simple percolation and equilibrium-based release model is used in conjunction with laboratory testing results and observations of field leachate characteristics for municipal solid waste landfills, hazardous waste landfills and industrial co-disposal landfills. The approach is applied for assessing the efficacy of potential treatment processes for mercury contaminated soils. For each landfill scenario, historical values of leachate pH and annual leachate generation quantities were used to derive the probability distribution functions of the field pH and LS ratio that may be expected to contact the disposed material over an estimated time period of 100 years. For each potential treatment process, laboratory testing was used to establish the treated material's leaching characteristics as a function of pH LS ratio. This approach allowed determination of distribution frequencies and limit values for release estimates instead of single point estimates. The probability of the mass of a constituent of interest released exceeding a hypothetical threshold was examined for each treatment process and landfill system. Results of the probabilistic analysis allowed for integration of a range of data and provided a good basis for assessing the efficacy of the examined treatment processes over the three assumed disposal scenarios.  相似文献   

19.
This article discusses the appropriateness of using landfills as part of remediating hazardous chemical and Superfund sites, with particular emphasis on providing for true long‐term public health and environmental protection from the wastes and contaminated soils that are placed in the landfills. On‐site landfilling or capping of existing wastes is typically the least expensive approach for gaining some remediation of existing hazardous chemical/Superfund sites. The issues of the deficiencies in US EPA and state landfilling approaches discussed herein are also applicable to the landfilling of municipal and industrial solid “nonhazardous” wastes. These deficiencies were presented in part as “Problems with Landfills for Superfund Site Remediation” at the US EPA National Superfund Technical Assistance Grant Workshop held in Albuquerque, New Mexico, in February 2003. They are based on the author's experience in investigating the properties of landfill liners and the characteristics of today's landfills, relative to their ability to prevent groundwater pollution and to cause other environmental impacts. Discussed are issues related to both solid and hazardous waste landfills and approaches for improving the ability of landfills to contain wastes and monitor for leachate escape from the landfill for as long as the wastes in the landfill will be a threat. © 2004 Wiley Periodicals, Inc.  相似文献   

20.
Long-term biodegradation of MSW in an aerobic landfill bioreactor was monitored as a function of time during 510 days of operation. Operational characteristics such as air importation, temperature and leachate recirculation were monitored. The oxygen utilization rates and biodegradation of organic matter rates showed that aerobic biodegradation was feasible and appropriate to proceed in aerobic landfill bioreactor. Leachate analyses showed that the aerobic bioreactor could remove above 90% of chemical oxygen demand (COD) and close to 100% of biochemical oxygen demand (BOD5) from leachate. Ammonium (NH4+), nitrate (NO3-) and sulphate (SO4(2-)) concentrations of leachate samples were regularly measured. Results suggest that nitrification and denitrification occurred simultaneously, and the increase in nitrate did not reach the levels predicted stoichiometrically, suggesting that other processes were occurring. Leachate recirculation reduced the concentrations of heavy metals because of the effect of the high pH of the leachate, causing heavy metals to be retained by processes such as sorption on MSW, carbonate precipitation, and hydroxide precipitation. Furthermore, the compost derived from the aerobic biodegradation of the organic matter of MSW may be considered as soil improvement in the agricultural plant production. Bio-essays indicated that the ecotoxicity of leachate from the aerobic bioreactor was not toxic at the end of the experiment. Finally, after 510 days of degradation, waste settlement reached 26% mainly due to the compost of the organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号