首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
随着农业生产的发展,酰胺类除草剂的大量使用造成了一系列环境污染问题.为探究酰胺类除草剂——S-异丙甲草胺对水生生态系统造成的影响,运用浮游植物分类荧光仪(Phyto-PAM),以蓝藻中的水华微囊藻(Microcystis flos-aquae)为受试生物,测定了水华微囊藻在不同ρ(S-异丙甲草胺)胁迫下7 d内光合色素含量及相关叶绿素荧光参数的变化.结果表明:①培养周期内,随ρ(S-异丙甲草胺)的增加水华微囊藻叶绿素a与类胡萝卜素的含量均受到不同程度的抑制.②各S-异丙甲草胺处理组的实际光能转化效率〔Y(Ⅱ)〕在培养后1~5 d均低于对照组,到第7天时均恢复正常水平.③从第3天起,各S-异丙甲草胺处理组最大光能转化效率(Fv/Fm)、半饱和光照强度点(Ik)均高于对照组,并且10、25和50 mg/L S-异丙甲草胺处理组的最大电子传递速率(Pnmax)也高于对照组.④从第5天起,10、25和50 mg/L S-异丙甲草胺处理组的快速光响应曲线均高于对照组.⑤除50 mg/L S-异丙甲草胺处理组的α(光能利用率)显著低于对照组外,其余各S-异丙甲草胺处理组的α值随培养时间的增加出现波动,到第5天又恢复正常水平.研究显示:当ρ(S-异丙甲草胺)范围为0.1~50 mg/L时,水华微囊藻中光合色素含量降低,而水华微囊藻能通过稳定实际光能转化效率及光能利用率来提高最大光能转化效率、电子传递速率及耐强光能力,从而增强光合活性耐受外来胁迫;当ρ(S-异丙甲草胺)为50 mg/L时,水华微囊藻抗胁迫能力有所降低.   相似文献   

2.
GC/MS测定土壤中的酞酸酯   总被引:3,自引:0,他引:3  
本文针对土壤中酞酸酯类化合物,采用快速压力溶剂萃取仪(ASE)提取,弗罗里柱净化,气相色谱-质谱联用仪(GC/MS)对酞酸酯类有机物进行定性、定量分析。实验过程中采用浓硫酸对实验器皿进行清洗,有效地防止环境中酞酸酯类有机物对样品的污染。结果表明:平均加标回收率在87%~106%之间,相对标准偏差在2.5%~6.5%之间,检出限在0.51μg/kg~1.6μg/kg之间。  相似文献   

3.
该文建立了快速溶剂萃取(ASE)-凝胶色谱净化(GPC)-气相色谱/质谱法(GC/MS)测定土壤中16种苯胺类化合物的分析方法。采用正己烷/丙酮(1∶1,V/V)为萃取溶剂提取,凝胶色谱净化,经HP-5MS(30.0 m×0.25 mm×0.25μm)色谱柱分离,质谱检测器检测,外标法定量。实验结果表明,16种苯胺类化合物在0.5~10 mg/L间具有良好的线性,相关系数(R)均0.999。取样量为10.0 g时,16种苯胺类化合物的方法检出限(MDLs)在0.021~0.076 mg/kg之间。在空白基底中进行加标回收实验,回收率在82.2%~96.1%之间,精密度(RSD)均10%。实际土壤样品的加标回收率为79.4%~90.1%。该方法前处理简便,准确、稳定,能够满足土壤中多种苯胺类化合物的同时测定。  相似文献   

4.
建立了加速溶剂萃取(ASE)-固相萃取净化(SPE)-气相色谱法测定土壤中17种有机氯农药(OCPs)的方法。采用ASE技术对土壤中OCPs进行提取,选用二氯甲烷∶丙酮=1∶1作为萃取溶剂,减少了组分的损失,17种OCPs的提取回收率达71.7%~113.4%。以弗罗里硅土小柱为净化载体,选择不同的淋洗溶剂形成4种方案进行净化试验,结果表明:方案1采用丙酮∶正己烷=1∶1为淋洗溶剂时的净化效果最好,17种OCPs的回收率为71.0%~97.6%,方法的检出限为0.16~0.28μg/kg。利用所建立的方法进行3个水平(0.01 mg/kg、0.02mg/kg、0.05mg/kg)的加标回收试验,结果表明:除了添加水平为0.01mg/kg时异狄氏剂和环氧七氯的回收率较差外,其余OCPs的回收率均达到72.3%~108.2%,相对标准偏差RSD小于15.6%,方法的回收率和相对标准偏差均满足土壤农药残留检测中准确度和精密度的要求。  相似文献   

5.
几种酰胺类除草剂的光降解及其致突变性   总被引:7,自引:1,他引:6  
对3种常见的酰胺类除草剂乙胺,异丙甲草胺,丁草胺的光降解进行了研究,采用Ames试验方法对母体和光降解产物的致突变性进行了检验,结果表明,在紫外灯照射下,这3种除草剂的光降解均较符合一级动力学,其降解速率次序为:异丙草胺〉乙草胺〉丁草胺。  相似文献   

6.
四种酰胺类除草剂对土壤酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
在实验室控制条件下,研究了酰胺类除草剂丁草胺、乙草胺、丙草胺和异丙甲草胺在田间推荐用量下,对土壤过氧化氢酶活性和脱氢酶活性的影响.结果表明,培养初期,4种除草剂对2种酶活性有不同程度的抑制作用,土壤过氧化氢酶活性于第7d就很快恢复,而脱氢酶活性在13d后得以逐渐恢复.添加稻秆可使土壤酶活性提高,土壤脱氢酶比过氧化氢酶活性变化大.4种除草剂对土壤生态环境影响不大,稻秆还田有利于提高土壤中生化过程的活性,缓冲外来污染物对土壤生态的影响.  相似文献   

7.
建立了同位素稀释GC-MS/MS法测定土壤和沉积物中多氯萘的分析方法。样品加入同位素内标,经ASE提取后,使用多层硅胶柱和氧化铝柱净化,再添加进样内标,采用三重四极杆串联质谱测定。方法检出限为0.26~1.6 ng/kg,回收率为55.6%~104.5%,采集电子垃圾场的土壤和沉积物实际样品进行验证性检测,结果显示,方法准确可靠,能够适用土壤和沉积物两种复杂基质样品的多氯萘检测。  相似文献   

8.
建立了加速溶剂萃取-Florisil柱净化-气相色谱/质谱法(GCMS)同时测定新鲜土壤中的16种多环芳烃和8种有机氯农药的分析方法。通过优化GCMS分析参数和ASE条件,用选择离子模式(SIM)检测。结果表明,方法在10~600μg/L范围内线性关系良好,相关系数均大于0.996,各目标化物的方法检出限为0.10~0.31μg/kg,空白硅藻土样品的加标回收率在63.1%~86.7%之间,7次平行测定的相对标准偏差为4.9%~15.1%。用该方法测定云南某地的3个土壤样品,多环芳烃和有机氯农药均有检出,其中多环芳烃质量分数在0.9×10~(-3)~4.7×10~(-3)mg/kg之间,有机氯质量分数在0.8×10~(-3)~6.6×10~(-3)mg/kg之间,适用于土壤样品中多环芳烃和有机氯农药的分析。  相似文献   

9.
建立了采用全自动固相萃取(SPE)净化,浓缩,气相色谱-串联四级杆质谱二级质谱监测(GC-QQQ-MS/MS)同时测定水中16种多环芳烃的方法。通过优化样品前处理条件和仪器分析条件,取样体积为1.0L时多环芳烃的最低检出限为0.06~0.27μg/L,最低定量限为0.21~0.91μg/L。针对三组加标浓度为10μg/L、100μg/L、500μg/L的样品,平行测定6次,平均回收率在79.84%~108.43%,相对标准偏差在3.17%~9.27%。  相似文献   

10.
ASE提取Florisil柱净化GC-ECD法测定土壤中有机氯   总被引:1,自引:0,他引:1  
建立了加速溶剂萃取(ASE)-Florisil柱净化-气相色谱(GC/ECD)法测定土壤中有机氯农药的分析方法。该方法对加速溶剂萃取条件、Florisil柱净化的洗脱剂种类和体积、气相色谱分离条件等进行了优化。选用优化后的实验条件能够对20种有机氯农药实现有效分离、排除基质干扰,方法检出限在0.1~10.5μg/kg范围内。对2种土壤样品中的20种有机氯农药进行测定,平行分析(n=3)的RSD均在20%以内,且加标回收实验中除异狄氏剂偏高和异狄氏剂醛偏低以外,其他18种有机氯农药的回收率均在64.5%~123.4%之间。能够满足土壤环境质量评价标准的分析要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号