首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
This paper reports the results of gasification tests using a catalytic fluidized bed gasifier to obtain a H2-rich stream by feeding different pellets made of wood, biomass/plastic and olive husks to the gasifier. The effects of both the steam supply and an in-bed catalyst on gasifier performance have been investigated. In general, pelletization was an effective pre-treatment for improving the homogeneity of the fuel and the reliability of the feeding devices. The use of biomass/plastic pellets in a catalyst bed yielded good results in terms of the hydrogen concentration (up to 32% vol.), even if an increase in tar production and in the fine/carbon elutriation rate was observed in comparison with wood pellets.  相似文献   

2.
A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kWth. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 °C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm3), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 °C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.  相似文献   

3.
A recycled polyethylene was fed in a pilot plant bubbling fluidized bed gasifier, having an internal diameter of 0.381 m and a maximum feeding capacity of 90 kg/h. The experimental runs were carried out under various operating conditions: the bed temperature was kept at about 850 degrees C, the equivalence ratio varied between 0.2 and 0.35, the amount of bed material was between 131 and 215 kg, the fluidizing velocity was between 0.5 and 0.7 m/s, quartz sand and olivine were used as bed material, and air and steam were used as fluidizing reactants. The results confirm that the tar removal treatments applied inside the gasifier (primary methods) can eliminate or strongly reduce the need for a further downstream cleanup of the syngas. In particular, the utilization of a natural olivine as an in situ tar reduction agent remarkably improves the quality of the product gas, in terms of both high hydrogen volumetric fraction and larger syngas yield.  相似文献   

4.
以20台沸腾炉(功率小于等于60 MW)的燃料特性分析数据和大气污染物的排放实测数据为基础,利用统计分析方法,研究了燃烧过程中排放的颗粒物(PM)、SO_2和NO_x初始排放浓度的影响因素,分析了沸腾炉PM、SO_2和NO_x排放现状,探讨了我国中小型沸腾炉PM、SO_2和NO_x排放管理控制的潜力和可行性.实验结果表明:在锅炉运行负荷大于等于80%的条件下,中小型沸腾炉PM的初始排放浓度基本上不受锅炉出力、过量空气系数和燃煤灰分含量的影响;燃煤的硫含量越高,SO_2初始排放浓度越高;过量空气系数越大,燃煤挥发分越低,NO_x初始排放浓度越高.  相似文献   

5.
A comparison between the most promising design configurations for the industrial application of gasification based, plastics-to-energy cogenerators in the 2-6 MWe range is presented. A pilot scale bubbling fluidized bed air gasifier, having a feeding capacity of 100 kg/h, provided experimental data: the syngas complete composition, the characterization of the bed material, the entrained fines collected at the cyclone and the purge material from the scrubber. Mass and energy balances and material and substance flow analyses have been therefore drawn to assess and compare design solutions utilizing two mixed plastic wastes (MPW) obtained from separate collection of plastic packaging, after different levels of pre-treatments. The related techno-economic performances have been finally estimated on the basis of the manufacturer’s specifications. The study concludes that the MPW obtained after a very simple pre-treatment and fed to a gasifier coupled with a steam turbine is the solution that currently offers the higher reliability and provides the higher internal rate of return for the investigated range of electrical energy production.  相似文献   

6.
After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions.  相似文献   

7.
Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.  相似文献   

8.
To obtain the distribution of fuel components to gas, tar and char in a pressurized fluidized bed waste pyrolyzer, experiments were conducted with a laboratory scale fluidized bed reactor. Waste samples were fed batchwise from the top of the reactor into the fluidized bed of silica sand and pyrolyzed by nitrogen/nitrogen-O2 gas and the effects of pressure, particle size, heating rate and oxygen addition were investigated. In the case of rubber, the char yield tended to increase a little and the tar yield decrease over the pressure of 304-709 kPa. In comparison with the thermogravimetry data it was clearly demonstrated that the char yield from fluidized bed pyrolysis is much lower. A small amount of oxygen addition decreased both tar and char yields but its further increase did not affect them very much.  相似文献   

9.
The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.  相似文献   

10.
For designing an efficient circulating fluidized bed reactor, understanding the complex hydrodynamic characteristics in the reactor is required. Hence, in the present study, the modeling and simulation of the circulating fluidized bed gasifier using plastic waste were carried out with Eulerian-Granular approach. Several cases were investigated as changing superficial gas velocities or sizes of plastic waste particle. Firstly, cases were examined with four different velocities when the particle diameter is 1 mm. At the gas velocity of 6 or 8 m/s, gas volume fraction is more than 95 % throughout the reactor and particle velocity has positive value overall. Therefore, a circulating fluidized bed seems to be formed in both cases. Comparing those two cases, better solid mixing can be expected considering the mass fraction and solid velocity at the superficial gas velocity of 6 m/s. Thus this case was further studied for the effect of particle size. As the diameters of plastic waste particle are 1 or 3 mm, it is considered that a circulating fluidized bed is formed. And plastic waste and sand particles are well mixed throughout the reactor. However, the particle diameter increases over 3 mm then, it is very hard to maintain circulating fluidization condition.  相似文献   

11.
Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.  相似文献   

12.
In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.  相似文献   

13.
An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful.  相似文献   

14.
介绍了循环流化床锅炉配置的CEMS,此时的CEMS不仅是大气污染物监测的一种测量系统,并且可为脱硫系统的脱硫剂投放提供参考数据,以此监控脱硫效率。  相似文献   

15.
The gas products from gasification processes have been considered to have some limitations in gas composition and heating value from the previous studies. Gasification characteristics of sewage sludge and wood mixture were investigated using different mixing ratios with the purpose of better quality of gas product suitable for energy/power generation. The gasification experiment was performed by an indirectly heated fluidized bed reactor. As reaction temperature increased from 600 to 900 °C, the yield of gas product increased with higher generation of CO, H2 and CH4 by more activated gas conversion reactions. As the equivalence ratio increased from 0.2 to 0.4, composition ratio of CO2 increased while CO, CH4, H2 decreased as expected. Several operating variables including mixing ratio of wood with dried sludge were also tested. From this initial stage of experiment, optimal operating conditions for the bubbling fluidized bed gasifier, could be considered 900 °C in temperature; 0.2 in equivalence ratio and 40 % in wood mixing ratio within test variables range. These results will be more thoroughly investigated for the application to the larger scale pilot system.  相似文献   

16.
A utilization way of herb residues is designed to convert herb residues to gas fuel in industrial-scale by a circulating fluidized bed gasifier in this paper. The product gas is used in the production of Chinese medicine, and the heat of the flue gas from the boiler can be used in herb residues drying to realize the energy recycling and no herb residues discharge. The gasification characteristics of herb residues in the circulating fluidized bed of 300 kg/h were investigated for about 200 h. The results indicated that the gas composition and tar yield were affected by biomass flow rate, equivalence ratio (ER), moisture content and char circulating. The lower heating value of product gas was 4–5 MJ/m3 using herb residues as feedstock. When mean biomass flow rate was at 5.5 kg m?2 s?1 and ER at 0.35, the product gas reached a good condition with lower heating value of 4.89 MJ/m3 and cold gas efficiency of 62.36%. When the moisture content changed from 12.5% to 18.7%, the concentrations of H2, CO and CO2 changed from 4.66% to 6.92%, 11.23% to 10.15%, and 16.55% to 17.82% respectively, and the tar content in gas decreased from 15.1 g/m3 to 14.4 g/m3 when the moisture content increased from 12.5% to 15.4%. There are metal oxides in the ash of herb residues, especially CaO, MgO, K2O, Al2O3, and Fe2O3 which have obvious function on tar catalytic decomposition. The ash that attaches to the char particles can decrease the tar yield and improve the quality of gas after returning to the gasifier.  相似文献   

17.
Plastic wastes have an especially high potential for use as alternative fuels, considering their high heating value and their large and stable availability. They could be used in electricity production based on gasification technologies, wherein electricity is produced in engines by means of the conversion of plastic wastes into a valuable gas. However, there are still some technical barriers to overcome before this technology can access the commercial stage, and further scientific research is needed to gain deeper understanding of the process and to be able to control and optimize it. This research presents the design and first experimental results of a bubbling fluidized bed gasifier conceived for the gasification of actual plastic residues. The experimental tests revealed that the selection and design of the reactor were adequate and proved some of the advantages of using plastic as a fuel, related in part to the absence of ashes and char. A valuable syngas over 5 MJ/m3 was generated, which contained a considerable fraction of methane as well as hydrogen and carbon monoxide as main combustible gases. The highest efficiency was achieved when the equivalence ratio was increased to 0.35, reaching 61 % in terms of cold gas efficiency and 66 % carbon conversion.  相似文献   

18.
Recent developments in national recycling and re-use programmes for municipal waste have led to segregation of an increasing proportion of waste to enhance material recovery. Several of the segregated streams contain materials that can not viably be re-used or recycled but can be used for energy recovery. In this study, the combustion of cardboard and waste wood was investigated in a small-scale packed bed reactor in order to provide fundamental data for the design/operation of moving bed furnaces. Key parameters of combustion including the ignition and burning rates were evaluated for various air flowrates and compared to the modelling results. Two successive stages of combustion were identified for both samples: the propagation of ignition front into the bed and combustion of the fuel above the ignition front. The burning rate of cardboard reached a peak of about 300 kg/m(2)h at the air flowrate of 936 kg/m(2)h and decreased at higher air flowrates. For waste wood, both the ignition and burning rates increased in the tested range of the air flowrate up to 702 kg/m(2)h, of which the values were very close to those for the cardboard. The model prediction was in good agreement with the test results for waste wood. However, the burning rate for cardboard was under-predicted due to strongly irregular shapes of the fuel.  相似文献   

19.
Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Footwear is the sector that consumes the major part of leather (60%). Logically, this industry is producing the largest quantity of leather wastes. The objective of this work was to demonstrate the technical feasibility of fluidized bed technology to recover the energy from burning footwear leather wastes. Considering the characteristics of leather waste, especially the heating value (12.5-21 MJ/kg), it can be considered a fairly good fuel. Moreover, leather waste has suitable characteristics for combustion, e.g., high volatile matter (76.5%) and low ash content (5.2%). Two factors deserve special attention: N3O and NOx emissions as a consequence of its unusual high nitrogen content (14.1%) and the chromium speciation because chromium is the main element of ash (3.2%) due to its use in leather tanning. A series of experiments has been carried out in a 0.1 MWt bubbling fluidized bed pilot plant. The combustion efficiency, flue gas composition and chromium speciation were investigated. Despite having high nitrogen content, a low conversion rate of fuel-N to NOx and N2O was attained. Chromium was concentrated in the solid streams and it was consistently found as Cr(III+); no presence of Cr(VI+) was detected.  相似文献   

20.
Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号