首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ecological modelling》2005,184(1):163-174
The Manila clam Tapes philippinarum is one of the most important commercial mollusc species in Europe. Intensive clam farming takes place in several coastal lagoons of the Northern Adriatic Sea, supporting local economy but raising the problem of the environmental sustainability of this activity. In this work, we propose a bioeconomic model that provides guidelines for an efficient management of intensive clam farming. Clam demography is described by a stochastic model of growth and survival, accounting for the effect of water temperature, seeding substratum and density dependence of vital rates. The model is calibrated on and applied to the case of Sacca di Goro, a lagoon located in the Po River Delta (Northern Italy). We consider two distinct management criteria: the optimisation of the marketable yield and the optimisation of monetary benefits, respectively. The use of a stochastic formulation allows us to reveal the existing trade-off between maximizing the median yield or profit and minimizing its variance. A Pareto analysis shows that seeding in spring or fall on sandy substrata and harvesting 18 months later provides the best compromise between these two contrasting objectives, maximizing profits while minimizing the associated uncertainty level. Finally, we show that seeding clams at high densities (more than 750 clams m−2 on muddy substrata and more than 1500 elsewhere) can have not only a potentially negative impact on the ecological sustainability of clam farming, but also a negative economic effect.  相似文献   

2.
The Manila clam Ruditapes philippinarum was introduced to Poole Harbour (lat 50°N) on the south coast of England in 1988 as a novel species for aquaculture. Contrary to expectations, this species naturalised. We report on individual growth patterns, recruitment, mortality and production within this population. On the intertidal mudflats the abundance of clams (>5 mm in length) varied seasonally between 18 and 56 individuals m−2. There appear to be two recruitment events per year and there were 6 year classes in the population. A mid-summer decline in abundance was partly due to increased mortality but probably also a result of down-shore migration in response to high water temperatures and the development of anoxic conditions. A winter fishery removes c 75% of clams of fishable size (maximum shell length ≥40 mm) and c 20% of the annual production. The fishery depresses the maximum age and size attained by the clams but appears to be sustainable. Clam mortality due to factors other than fishing is highest in late-winter to early spring. The growth of the clams is intermediate in comparison with many published studies but remarkably good given their intertidal position. As on the coasts of the Adriatic Sea, where the clam is also non-native, the Manila clam has thrived in a shallow, eutrophic, lagoon-like system on the English coast. While the Poole Harbour population is currently Europe’s most northerly reported self-sustaining, naturalised population, given forecasts of increasing air and sea temperatures it might be expected that this species will eventually spread to more sites around the coasts of Northern Europe with associated economic and ecological consequences.  相似文献   

3.
Dwarf eelgrass (duckgrass; Zostera japonica) and Manila clams (Ruditapes philippinarum) are two introduced species that co-occur on intertidal flats of the northeast Pacific. Through factorial manipulation of clam (0, 62.5, 125 clams m−2) and eelgrass density (present, removed by hand, harrowed), we examined intra- and interspecific effects on performance, as well as modification of the physical environment. The presence of eelgrass reduced water flow by up to 40% and was also observed to retain water at low tide, which may ameliorate desiccation and explain why eelgrass grew faster in the presence of conspecifics (positive feedback). Although shell growth of small (20–50 mm) clams was not consistently affected by either treatment in this 2-month experiment, clam condition improved when eelgrass was removed. Reciprocally, clams at aquaculture densities had no effect on eelgrass growth, clam growth and condition, or porewater nutrients. Overall, only Z. japonica demonstrated strong population-level interactions. Interspecific results support an emerging paradigm that invasive marine ecosystem engineers often negatively affect infauna. Positive feedbacks for Z. japonica may characterize its intraspecific effects particularly at the stressful intertidal elevation of this study (+1 m above mean lower low water).  相似文献   

4.
Coastal lagoons are subject to several sources of contaminations. To shade light on the contamination level of the Santa Gilla lagoon (Tyrrhenian Sea) we investigated the spatial distribution of Cr, Ni, Pb, Zn and Hg in sediments and their correlation with grain size and organic matter contents. Moreover, sediment contamination levels and the ecological risk associated with metal concentration were assessed using different abiotic indicators. The lagoon is characterised by low levels of contamination, with exceptions for Pb and Hg, whose distribution reflects the position of an old chlor-alkali plant and that of an airport. These results indicate that the restoration put in place 30 years ago have not reached the expected target and that the presence of the airport deserves further attention. In the outer section of the lagoon, where clam fishery occurs, we observed low levels of contamination suggesting that such artisanal fishery could somehow help mobilising metals. We conclude that the area exposed to Hg pollution, though tentatively restored, still suffers of a potential risk of ecosystem deterioration. We pinpoint that further investigations on the mobility, bioavailability and toxicity of metals are needed to finally address the actual impairment of the Santa Gilla lagoon.  相似文献   

5.
Growth, reproduction and gross biochemical composition of the Manila clam Ruditapes philippinarum were studied for one oceanic and two inner stations in the Bay of Arcachon, France, from March 1989 to March 1991. During this period, sea-water temperature, salinity and chlorophyll a were also recorded. A marked increase in length occurred during the first year in all areas, after which growth rates decreased. In contrast, weight increased more steadily. The Manila clam exhibited best development in the oceanic area, but there was no difference in growth of clams between the two inner stations. Differences in growth between oceanic and inner stations may result from differences in fluctuations of environmental conditions such as temperature and salinity. Except for higher carbohydrate contents in clams recovered in autumn from the oceanic station Le Ferret, biochemical components differed little between stations. During the second winter, glycogen levels were relatively low, but no mortalities were recorded. On the other hand, sowing spat in autumn instead of spring or sowing larger-sized spat did not reduce the time required for culture of R. philippinarum.  相似文献   

6.
Rearing benthic bivalves that are contaminated by persistent organic pollutants (POPs) in areas with low pollution levels permits their natural detoxification. Here, we present the results of novel detoxification experiments conducted with the Manila clam (Tapes philippinarum) in the Venice Lagoon; these experiments were conducted both in summer and winter. Measurements of dioxins (PCDD), furans (PCDF), polychlorinated biphenyl (PCB) and hexachlorobenzene (HCB) concentrations in clam flesh over time after their resettlement in cleaner areas allowed for determining the minimum time required to reach safe toxicity levels. Moreover, dioxin fingerprint dynamics demonstrated successful detoxification from industrial contaminants. A simple bioaccumulation/detoxification model applied to the collected data provided for the first time estimation of detoxification rates and half-lives for POP congeners in clam flesh. This work provides a basis for considering natural detoxification as a viable solution for safely exploiting resources otherwise restricted from human consumption due to associated health risks.  相似文献   

7.
《Ecological modelling》2005,184(1):103-123
The nitrogen cycle in the lagoon of Venice, which is the largest Italian lagoon, was investigated by means of a 3D fully coupled transport – water quality model, which had been validated against a substantial amount of real-world data. Nitrogen fluxes among different ecosystem compartments were computed for each month of a reference year, and for each one of the three sub-basins into which the lagoon is conventionally subdivided. The computation included the loads of nitrogen discharged by the tributaries, the direct inputs from the industrial area and the city of Venice, the atmospheric loads, the fluxes at the three lagoon inlets and the internal fluxes between sediment and water compartments and among the three sub-basins. The results of the analysis show that the lagoon, as a whole, exports nitrogen towards the sea. Approximately 4000 tN/year are recycled by the system, while 4640 tN/year is the net input from the drainage basin and the other sources, thus leading to about 8640 tN/year of dissolved inorganic nitrogen that enter the water compartment. Around half of the this amount is used by primary producers, one fourth is exported towards the sea, and one fourth is transferred into the sediment compartment, or lost to atmosphere. These findings suggest that the exchanges through the inlets play an important role in keeping nitrogen concentration at an acceptable level. A more detailed analysis of the model results shows that the non-homogeneous spatial distribution of tributary discharges and point sources is the main cause of the differences in the ecosystem response and water quality among the three sub-basins. Nutrient poorer sub-basins fix a ration of available inorganic nutrient higher than nutrient rich ones. However, they are more efficient in transferring the biomass to the highest trophic levels. Results also include estimates of fluxes that were not quantified so far (such as grazing and recycling), and a validated model, which could have a practical use, for example for assessing implications of reduction of nutrient loads.  相似文献   

8.
Shell growth rate is an important component of fitness in bivalve molluscs. Using the parameter computed from the von Bertalanffy growth equation, we quantitatively compared rates of annual shell grwoth among the hard clams Mercenaria mercenaria, M. campechiensis, and their hybrids sampled from a variety of habitats in the Indian River lagoon, Florida, USA, a zone of species overlap and natural hybridization. Our results indicate that the classical paradigm describing hard clam growth, in which growth rate is fastest in M. campechiensis, intermediate in hybrids, and slowest in M. mercenaria is not supported in the Indian River lagoon. Instead, M. campechiensis has a growth advantage in deep-water habitats in the northern section of our study area. In the central and southern sections of our study area, hybrids have a growth advantage over M. mercenaria in shallow-water habitats, but M. mercenaria has a growth advantage over hybrids in deep-water habitats. In all other sampled habitats, either growth rate among genotype classes is equal, or M. mercenaria has a growth advantage. This complex relationship between genotype and habitat-specific growth provides a mechanism for selection to act on hard clams in the Indian River.  相似文献   

9.
The Manila clam Ruditapes philippinarum (Adams and Reeve, 1850) is one of the mollusc species that, driven mainly by the shellfish market industry, has extended throughout the world, far beyond the limits of its original habitat. The Manila clam was introduced into France for aquaculture purposes, between 1972 and 1975. In France, this venerid culture became increasingly widespread and, since 1988, this species has colonised most of the embayments along the French Atlantic coast. In 2004, this development resulted in a fishery of ca. 520 t in Arcachon Bay.  相似文献   

10.
The Manila clam Ruditapes philippinarum, an intertidal bivalve, was exposed to different salinity regimes (from 31.0–31.7‰ down to 20‰, 15‰, 10‰, 5‰), and the endogenous rhythm in its oxygen consumption was studied using an automatic intermittent-flow respirometer. When exposed to salinities reduced from 31.5‰ to 20‰ and 15‰ under otherwise constant conditions, the clams recovered a clear endogenous circatidal rhythm in their oxygen-consumption rate after having dampened periods of 12 h and 48 h, respectively. At salinities less than 10‰, however, the oxygen-consumption rate was depressed greatly at the beginning of the experiment for about 36 h and then increased to a level higher than normal, but the rhythm of oxygen consumption was not recovered. The results of this study indicate that the Manila clam, a euryhaline organism, cannot maintain a normal metabolic activity at a salinity lower than 15‰. All clams were dead after exposure at a salinity of 5‰ for 7 days. Received: 28 February 2000 / Accepted: 26 August 2000  相似文献   

11.
In this article, we show how a disease could bias stable isotope analyzes of trophic networks and propose a strategy in the choice of tissues to be analyzed. In the past few years, a new pathology (brown muscle disease or BMD) affecting the posterior adductor muscle of Ruditapes philippinarum has emerged in Arcachon Bay. BMD induces a necrosis of muscle tissues which become infused by conchiolin and hence calcified. As muscle of mollusks are often used for trophic food webs studies through stable isotopic analyzes, this work investigated the effect of BMD on carbon and nitrogen isotopic ratios of anterior and posterior adductor muscles of clams collected in February and August 2007. Infected clams displayed a lower condition index and a posterior adductor muscle δ13C enrichment of 1.2‰ in February and 0.7‰ in August. δ15N of posterior muscles was however not affected by the disease. Anterior muscle of diseased clams remained healthy and displayed the same isotopic signature as both posterior and anterior muscular tissues of healthy clam. Acidification significantly depleted δ13C in posterior muscles of infected clams, suggesting calcification, contrary to anterior muscles of infected clam and to both muscles of healthy clams, where no effect was observed. An X-ray diffractometry analysis confirmed the presence of CaCO3 (aragonite). Trophic food web studies relying on stable isotope ratios should utilize only healthy animals or anterior adductor muscles when expertise in mollusk pathology is lacking.  相似文献   

12.
Little attention has been given to the behavioural and physiological effects of dredging on clams. The response of the clam Spisula solida under stress imposed by dredging activity is analysed in terms of reburial time and two acute indices: AEC (adenylic energetic charge) and ATP per milligram dry weight. Stress on undersized (<25 mm) S. solida, due to habitat disturbance by dredging itself and subsequent aerial exposure was measured with in situ studies during September 1999 at Vilamoura, a bivalve sandy ground, off the southern coast of Portugal. The study showed significant increases in reburial time and a decrease in adenylic-derived indices of stressed bivalves compared with in situ control bivalves monitored by SCUBA divers. It was concluded that the stress caused by dredging affects the behavioural and physiological responses of S. solida. Moreover, the reburial time is an easy and valuable indicator of stress levels in the studied clam.  相似文献   

13.
We present a modelling framework that combines machine learning techniques and Geographic Information Systems to support the management of an important aquaculture species, Manila clam (Ruditapes philippinarum). We use the Venice lagoon (Italy), the first site in Europe for the production of R. philippinarum, to illustrate the potential of this modelling approach. To investigate the relationship between the yield of R. philippinarum and a set of environmental factors, we used a Random Forest (RF) algorithm. The RF model was tuned with a large data set (n = 1698) and validated by an independent data set (n = 841). Overall, the model provided good predictions of site-specific yields and the analysis of marginal effect of predictors showed substantial agreement among the modelled responses and available ecological knowledge for R. philippinarum. The most influent environmental factors for yield estimation were percentage of sand in the sediment, salinity, and water depth. Our results agree with findings from other North Adriatic lagoons. The application of the fitted RF model to continuous maps of all the environmental variables allowed estimates of the potential yield for the whole basin. Such a spatial representation enabled site-specific estimates of yield in different farming areas within the lagoon. We present a possible management application of our model by estimating the potential yield under the current farming distribution and comparing it to a proposed re-organization of the farming areas. Our analysis suggests a reduction of total yield is likely to result from the proposed re-organization.  相似文献   

14.
Malthusian overfishing and efforts to overcome it on Kenyan coral reefs   总被引:1,自引:0,他引:1  
This study examined trends along a gradient of fishing intensity in an artisanal coral reef fishery over a 10-year period along 75 km of Kenya's most populated coastline. As predicted by Malthusian scenarios, catch per unit effort (CPUE), mean trophic level, the functional diversity of fished taxa, and the diversity of gear declined, while total annual catch and catch variability increased along the fishing pressure gradient. The fishery was able to sustain high (approximately 16 Mg x km(-2) x yr(-1)) but variable yields at high fishing pressure due to the dominance of a few productive herbivorous fish species in the catch. The effect of two separate management strategies to overcome this Malthusian pattern was investigated: fisheries area closure and elimination of the dominant and most "competitive" gear. We found that sites within 5 km of the enforced closure showed significantly lower total catch and CPUE, but increased yield stability and trophic level of catch than predicted by regression models normalized for fishing effort. Sites that had excluded illegal beach seine use through active gear management exhibited increased total catch and CPUE. There was a strong interaction between closure and gear management, which indicates that, for closures to be effective at increasing catch, there must be simultaneous efforts at gear management around the periphery of the closures. We propose that Malthusian effects are responsible for the variation in gear and catch and that active management through reduced effort and reductions in the most competitive gear have the greatest potential to increase the functional and trophic diversity and per-person productivity.  相似文献   

15.
Abstract: Trophic cascades triggered by fishing have profound implications for marine ecosystems and the socioeconomic systems that depend on them. With the number of reported cases quickly growing, key features and commonalities have emerged. Fishery‐induced trophic cascades often display differential response times and nonlinear trajectories among trophic levels and can be accompanied by shifts in alternative states. Furthermore, their magnitude appears to be context dependent, varying as a function of species diversity, regional oceanography, local physical disturbance, habitat complexity, and the nature of the fishery itself. To conserve and manage exploited marine ecosystems, there is a pressing need for an improved understanding of the conditions that promote or inhibit the cascading consequences of fishing. Future research should investigate how the trophic effects of fishing interact with other human disturbances, identify strongly interacting species and ecosystem features that confer resilience to exploitation, determine ranges of predator depletion that elicit trophic cascades, pinpoint antecedents that signal ecosystem state shifts, and quantify variation in trophic rates across oceanographic conditions. This information will advance predictive models designed to forecast the trophic effects of fishing and will allow managers to better anticipate and avoid fishery‐induced trophic cascades.  相似文献   

16.
A steady-state model of the Venice lagoon food web was constructed, based on a comprehensive set of data, which were collected in the years 2001-2005. Energy flows were estimated by means of an inverse methodology of constrained optimization based on the Minimum Norm criterion, i.e. on the minimization of both the sum of squares of the residuals and of the sum of squares of energy flows. The solution was constrained by a set inequalities, which were derived from general eco-physiological knowledge and site specific data on energy flows. The trophic network was represented by thirty-two nodes, including single-species compartments for the species of high economical or ecological relevance. Mass balance equations were weighted, in order to obtain meaningful results in presence of large differences, up to 5 orders of magnitude, among biomasses. A perturbation technique was applied, with the purpose of reducing the risk of finding solutions heavily affected by the set of constraints and of obtaining a more robust representation of the energy flows. The main patterns of energy flow are consistent with those obtained in previous attempts at modelling the Venice lagoon food web. Micro- and macro-phytobenthos account for the largest fraction of the primary production. Energy is then transferred towards higher trophic levels by means of two main pathways: the recycling of dead biomass through the detritus compartment and the direct consumption by grazers. The first pathway is the most important and accounts for approximately two/thirds of the energy transferred to the second trophic level.  相似文献   

17.
In soft sediment marine communities, fishes frequently bite off extended siphons of buried clams; the consequential shortening of the siphon is known to reduce burial depth of the clams, secondarily increasing their vulnerability to lethal excavating predators. In this study, siphon nipping on the yellow clam, Mesodesma mactroides, was simulated by removing the top 6.6–30% of siphons. This caused a burrow reduction in 25–75%, respectively, compared to control individuals with intact siphons, in field and laboratory trials. To examine subsequent consequences of reduced burial depth, we exposed nipped and intact clams to potential predators in the laboratory simulating the observed natural clam abundance. Artificially nipped clams were consumed twice as much as control clams. The present results suggest that sympatric croppers contribute to the stock recovery failure by facilitation of lethal predation and that re-seeding to increase the local abundance of M. mactroides should be an essential aspect of conservation efforts in South America.  相似文献   

18.
Dynamic simulations of 18

mass-balance marine trophic models are used to explore the stability of systems when briefly impacted by a fishery on the key ‘wasp–waist' populations occurring at intermediate trophic levels. The results are related to different ecosystem goal functions previously identified as representative of three attributes of ecosystems development: community complexity, homeostasis and energetics. System recovery time, the time required for all functional groups to returns to baseline level, and here used as a measure of model stability, was inversely correlated to Finn's Cycling Index, i.e. to the fraction of ecosystem throughput that is recycled, and to the mean length of trophic pathways in the systems. Systems with higher capacity to recycle detritus are systems with a higher ability to recover from perturbations. The results are in agreement with the E.P. Odum's theory of ecosystem development, where recycling is interpreted as a chief positive feedback mechanism that contributes to stability in the mature systems by preventing overshoots and destructive oscillations due to external impacts.  相似文献   

19.
Abstract:  Applying the ecosystem services concept to conservation initiatives or in managing ecosystem services requires understanding how environmental impacts affect the ecology of key species or functional groups providing the services. We examined effects of river impoundments, one of the leading threats to freshwater biodiversity, on an important ecosystem service provided by large tropical rivers (i.e., artisanal fisheries). The societal and economic importance of this ecosystem service in developing countries may provide leverage to advance conservation agendas where future impoundments are being considered. We assessed impoundment effects on the energetic costs of fisheries production (embodied energy) and commercial market value of the artisanal fishery of the Paraná River, Brazil, before and after formation of Itaipu Reservoir. High-value migratory species that dominated the fishery before the impoundment was built constituted a minor component of the contemporary fishery that is based heavily on reservoir-adapted introduced species. Cascading effects of river impoundment resulted in a mismatch between embodied energy and market value: energetic costs of fisheries production increased, whereas market value decreased. This was partially attributable to changes in species functional composition but also strongly linked to species identities that affected market value as a result of consumer preferences even when species were functionally similar. Similar trends are expected in other large tropical rivers following impoundment. In addition to identifying consequences of a common anthropogenic impact on an important ecosystem service, our assessment provides insight into the sustainability of fisheries production in tropical rivers and priorities for regional biodiversity conservation .  相似文献   

20.
Manila clams, Ruditapes philippinarum, removed from their natural environment and maintained for 9 weeks in continuously immersed conditions exhibited a clear endogenous circatidal rhythm in oxygen consumption. The clams exhibited a semidiurnal rhythmicity in oxygen consumption after showing a diurnal pattern in the first few days (5 to 7 d) of the experiment. The results of the present study indicate that activity rhythms of clams are controlled not only by exogenous factors, but also by an endogenous circatidal periodicity. Received: 8 April 1998 / Accepted: 1 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号