首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
基于2013~2021年期间秦皇岛海域遥感反射率、悬浮物浓度及叶绿素a浓度等实测数据,开展了该海域Sentinel-3 OLCI影像的悬浮物浓度遥感反演模型研究.结果表明,文献中常用的典型经验模型形式均不适用于秦皇岛海域,以490、620及708.75nm为悬浮物反演的敏感波段,以560nm为参比波段,将各敏感波段与参比波段的比值作为自变量,最终建立了适用于秦皇岛海域的Sentinel-3 OLCI四波段悬浮物浓度遥感反演模型(R2=0.69,MAPE=24.79%,RMSE=2.82mg/L);并采用2021年7月24日Sentinel-3 OLCI影像进行悬浮物浓度遥感反演产品的真实性检验,得到反演值与实测值的平均相对误差为13.24%.将上述四波段模型用于2021年1~12月秦皇岛海域的Sentinel-3 OLCI影像,反演得到月均悬浮物浓度,发现秦皇岛海域悬浮物浓度整体呈现沿岸海域高、离岸海域低,秋冬季高、春夏季低的时空变化特征;且2018~2021年秦皇岛海域悬浮物浓度的年均值逐年递减,水体越来越澄清.  相似文献   

2.
利用2016年4月23日、4月24日、6月1日和7月6日采集的水体实测数据及同期的GOCI(Geostationary Ocean Color Imager)卫星遥感影像,开展秦皇岛海域的叶绿素a(chlorophy a,Chl a)浓度研究。通过归一化暗像元指数(normalized dark pixel index,NDPI)对影像8个波段组合的辐射率与Chl a浓度进行相关性分析,选择相关系数≥70%的波段组合作为自变量,构建Chl a浓度反演模型(R2=0.956)。经独立时相实测数据检验,模型平均相对误差为25.3%。利用该模型反演秦皇岛海域2017年12月—2018年11月的Chl a浓度,结果显示,秦皇岛海域近岸的Chl a浓度总体较高,秋、冬季节总体浓度较低,夏季出现浓度峰值。  相似文献   

3.
以2009~2019年HJ-1A/B卫星多光谱数据和对应日期的实测数据为数据源,通过预处理提取出各波段组合反射率并与实测叶绿素a浓度数据进行统计相关性分析,选取相关性最高的波段组合作为特征变量与2/3的实测叶绿素a浓度数据进行建模,并用剩下的1/3实测叶绿素a浓度数据进行精度验证以确定最佳遥感反演模型,最后根据最佳反演模型对2009-2019年的香港近海海域叶绿素a浓度进行反演,明晰该海域近10年的叶绿素a浓度时空变化特征.结果表明:利用HJ-1A/B卫星多光谱数据反演香港近海海域叶绿素a浓度的最佳波段组合为第3波段和第2波段比值(B3/B2),相关系数(r)为0.893;最佳反演模型为利用B3/B2构建的e指数回归模型(Chl=0.004e6.693(B3/B2)),决定系数(R2)为0.934,均方根误差(RMSE)为0.255μg/L,平均相对误差(RPD)为25%;近10年香港近海海域的叶绿素a浓度时空变化特征:空间上整体呈现“东高西低,由东向西逐渐减小”的分布特征,西部海域比东部海域平均浓度低5μg/L左右;2017年内呈“春低秋高,夏升冬降”的随季节变化特点,其中秋季最高,夏春两季次之,冬季最低.  相似文献   

4.
太湖水域叶绿素a浓度的遥感反演研究   总被引:5,自引:0,他引:5  
利用太湖水域MODIS遥感数据的各波段反射率组合计算值,与实测的叶绿素a浓度进行相关性分析,找到相关性最好的反射率组合,建立反演太湖叶绿素a浓度的遥感模型.结果表明,利用MODIS数据可以较好地实现对太湖水域叶绿素a浓度的定量反演计算,并以MODIS数据第3、第17波段的反射率组合作为遥感指数建立了反演叶绿素a浓度的模型.第3、第17波段的波长范围分别为459nm~479nm、890nm~920nm,这一波段选择与以往使用TM数据得到的结论有所不同.  相似文献   

5.
利用高光谱反演模型评估太湖水体叶绿素a浓度分布   总被引:3,自引:1,他引:2  
叶绿素a浓度是评价水体富营养化和初级生产力的一个重要参数,高光谱遥感是获取叶绿素a浓度的有效手段.为建立太湖水域叶绿素a的最佳高光谱估算模型,选取2015年5—7月共计60组同步实测高光谱数据和叶绿素a浓度数据,在地面光谱反射率和叶绿素a浓度相关性分析的基础上,使用2∶1的数据样本进行太湖水域叶绿素a的最佳高光谱估算模型的建立和验证,筛选模型分别为波段比值、三波段、荧光峰位置、峰谷距离、一阶微分、NDCI(Normalized Difference Chlorophyll Index)、峰面积、荧光峰高度、WCI(Water Chlorophyll-a Index)和四波段模型.结果表明,建模得到的四波段模型决定系数最高,峰面积模型的决定系数相对最低;四波段模型的反演精度最高,均方根误差(RMSE)为0.00376 mg·L~(-1),平均绝对误差(MAPE)为27.86%,而WCI模型的反演精度相对最低,RMSE为0.01231 mg·L~(-1),MAPE为45.11%.将反演精度最高的四波段模型应用于2015年8月3日的两景HSI(Hyperspectral Imaging Radiometer)高光谱影像数据,也得到较高精度,利用同步实测叶绿素a浓度验证的决定系数为0.7643,RMSE为0.00433 mg·L~(-1),MAPE为45.62%.在春、夏季叶绿素对水体光学特性占主导作用且叶绿素分布均匀的情景下,本研究可为太湖水域叶绿素a的高光谱反演和水环境监测提供有价值的参考,其它季节水体光谱特点的研究尚待进一步开展.  相似文献   

6.
太湖叶绿素a浓度时空分异及其定量反演   总被引:8,自引:2,他引:6  
利用2005年实测叶绿素a浓度数据分析了太湖叶绿素a浓度的时空分布特征,并利用同步光谱数据,分季节对太湖叶绿素a浓度的反演模型进行研究,从而分析叶绿素a的时空变化对反演模型的影响.首先分析1a内叶绿素a浓度随时间的变化规律,然后利用反距离加权插值法绘制叶绿素a浓度不同季节空间分布图,分析叶绿素a浓度在不同季节的空间分布规律,在此基础上分春、夏、秋3个季节和中营养化、轻度富营养化、中度富营养化、重度富营养化4个营养状态进行叶绿素a浓度定量反演模型研究.结果表明,太湖叶绿素a浓度具有明显的时空分布特征.夏季叶绿素a浓度最高,冬季最低,平均浓度分别为56.29μg/L、13.61 μg/L.秋季由于受到夏季高浓度的影响,叶绿素a浓度高于春季,平均值分别为26.43μg/L、34.78μg/L;夏季叶绿素a浓度空间变化最大,冬季全湖叶绿素a浓度含量较为均一,空间变化不明显,秋季空间差异要大于春季;全年北部湖区的空间差异较大,而南部湖区相对较小.不同季节叶绿素a反演算法模型不同,春、秋季波段比值法反演效果较好;而夏季微分法反演效果明显好于其它反演算法,不同营养状态条件下反演算法差异相对较小.  相似文献   

7.
悬浮颗粒物(total suspended matter,TSM)是重要的水环境参数,影响着海水的透明度和初级生产力,因此总悬浮颗粒物的监测对于海洋牧场环境的评价具有重要意义。卫星遥感技术具有显著的时空观测优势,但目前尚无专门针对海洋牧场小尺度海域的TSM遥感产品。本研究以浙江嵊泗枸杞岛贻贝养殖区为研究对象,基于春、夏、秋、冬4个季节的调查实测数据,建立了面向Landsat-8卫星遥感影像的TSM浓度定量反演模型。验证结果表明,反演模型具有良好的估算精度,决定系数R2为0.72,均方根误差为6.59 g/m3,绝对偏差为0.72 g/m3,平均绝对百分误差为29.8%;进一步将其用于2021-2022年春、夏、秋、冬4个季节的Landsat-8影像,反演了贻贝养殖区及毗邻海域的TSM浓度遥感产品,分析了其时空变化特征。  相似文献   

8.
环境一号卫星在大型水体水环境监测与评价中具有独特的优势。为探求遥感影像在水体叶绿素a浓度反演中的应用,基于环境一号卫星CCD数据和同步实测叶绿素a浓度值,通过影像辐射定标、大气校正和几何精校正等预处理获取水体反射率,分别将单波段和不同特征波段组合的反射率与实测叶绿素a值进行皮尔逊相关分析,选取R20.8的波段组合进行建模,通过对3种波段组合反演结果对比和精度验证,发现基于CCD数据第4波段与第3波段反射率比值的二次模型具有良好的反演效果,模型预测值与实测值的最小相对误差为0.76%,平均相对误差10.99%,均方根误差为0.007 6 mg/L,明显低于实测叶绿素a浓度的平均值;最后基于该模型实现了太湖叶绿素a浓度反演,并对叶绿素a的时空分布进行了初步分析。  相似文献   

9.
为实现对平寨水库叶绿素a的遥感监测,选取平寨水库2017年11月17—18日的实测叶绿素a浓度数据和准同步的Sentinel-2数据,通过选取最佳波段组合建立BP神经网络模型,对平寨水库叶绿素a进行反演,并分析其空间分布特征。结果表明:Sentinel-2红边波段对叶绿素a的敏感性优于可见光波段,在叶绿素a浓度反演方面具有较大潜力。相关系数最大的波段组合方式是:B5/B4、[1/B4-1/B5]*B6、[1/B4-1/B5]*B7和[1/B4-1/B5]*B8;BP神经网络模型可决系数R2为0.9160,平均相对误差为29.87%,反演精度优于三波段模型;平寨水库叶绿素a浓度空间分布差异明显,水面开阔的中心库区浓度较高,各支流上游河段浓度较低。Sentinel-2数据可较好地应用于喀斯特高原湖泊叶绿素a浓度反演,BP神经网络模型估测结果合理、可靠;研究结果可为平寨水库水环境治理提供科学依据。  相似文献   

10.
王行行  王杰  崔玉环 《环境科学》2020,41(3):1207-1216
开展河湖系统悬浮物监测对掌握水体泥沙运移规律、制定水环境治理措施具有重要意义.以安徽省升金湖与连接长江段水体为研究区,根据实测光谱模拟Sentinel-2 MSI影像波段反射率,结合同步水体悬浮物实测数据建立反演模型;而后根据2017~2019年28景MSI影像水体悬浮物反演结果,分析河湖系统水体悬浮物浓度的变化规律,并探究水位变化对其空间分异的影响.结果表明:①根据MSI影像第六波段与第三波段的比值建立的二次多项式模型具有较高的反演精度(R~2=0.863,RMSE=22.211 mg·L~(-1)),适用于高浊度水体悬浮物反演;②在空间上,升金湖入湖口附近、上中湖区西北部和下湖悬浮物浓度相对较高,除夏季外升金湖悬浮物浓度均高于其连接长江段;在时间上,升金湖悬浮物浓度在夏季相对较低,在其他季节较高,而与其连接的长江水体呈现相反的年内变化规律;③闸控影响下河湖连通性改变造成的水位变化,是影响升金湖-长江悬浮物空间分异的关键因素.在平水期与枯水期,升金湖对长江悬浮物浓度变化具有一定的贡献度,而在丰水期,升金湖与长江悬浮物浓度变化之间的相关性不明显.  相似文献   

11.
颗粒物粒径分布(particle size distribution,PSD)代表颗粒物的数量浓度随粒径的变化特征,掌握PSD的分布信息对于理解海洋碳循环和量化生态系统的结构和功能具有重要意义。基于2017年夏季和秋季两个航次的现场实测数据,本文进行了参考粒径D0对PSD的影响研究,探讨了秦皇岛近岸水体不同季节PSD的...  相似文献   

12.
珠江口海域是典型的二类水体,光谱特性复杂,一直是国内学者研究的热点区域。本文基于2014年春(5月)、夏(8月)、秋(11月)、冬(2月)珠江口海域四个航次实测的表观光谱资料,探讨了珠江口海域遥感反射率的类型及时空分布特性。结果发现珠江口海域四季水体遥感反射率呈5大类型,每一类光谱都具有典型的区域性和季节变化特征,其谱峰在450~575 nm范围内随季节变化而移动,A类型常年分布在珠江口内,B类型冬春季节分布在珠江口外混合过渡类水体中,C类型主要分布在珠江口口门外水深较深的离岸海域,D类型春夏季在万山群岛附近海域出现,E类型与大洋水体的光谱特征类似。分析表明5种光谱类型的谱型变化趋势由不同的水质因子主导。该研究对深入探讨珠江口等我国近海二类复杂水体的光谱特性及其水色要素的遥感反演具有重要的参考价值。  相似文献   

13.
气象因子对臭氧(O3)浓度有重要影响,为探索O3浓度时空变化及相关因子,利用多元线性回归和后向轨迹聚类分析2014—2019年浙江省O3浓度和气象因子数据. 结果表明:①浙江省O3浓度时空分布不均匀,季节性变化差异显著,总体呈夏季>秋季>春季>冬季的特征,年均值呈上升趋势;春季、夏季、秋季和全年O3浓度均于07:00左右达最小值,之后呈上升趋势,至15:00达峰值后降低,冬季O3浓度最小值出现时间较其他季节晚1 h左右. 高浓度O3主要分布在浙江省东北部及北部区域. ②多元线性回归模型结果表明,多元线性回归模型影响因子和拟合效果存在季节性差异,其中,春、秋两季蒸发量对O3浓度的贡献率均超过20%,夏季相对湿度对O3浓度的贡献率超过40%,秋季日光照时长对O3浓度的贡献率超过40%,秋、冬两季NO2浓度对O3浓度的贡献率均超过35%. 春季多元线性回归模型均方根误差(RMSE)、均方绝对百分比误差(MAPE)和变异解释量(R2)分别为0.213、26.45%和0.422,夏季分别为0.234、30.49%和0.359,秋季分别为0.169、24.02%和0.445,冬季分别为0.154、34.14%和0.419. 研究表明,浙江省O3浓度具有显著的时空分布特征,多元线性回归模型拟合结果在浙江省春、秋两季显著优于夏、冬两季.   相似文献   

14.
城市臭氧(O3)污染已成为当前主要的大气污染问题之一,也是空气污染防控面临的新挑战. 然而,基于长时段连续监测数据的O3浓度季节性变化规律及成因解析仍较薄弱. 本文基于2014年3月1日—2021年2月28日空气质量在线监测平台日尺度数据,通过偏相关等方法探讨京津冀及周边地区“2+26”城市O3的季节性变化规律. 结果表明:①“2+26”城市2014—2020年O3年均浓度上升速率为3.82 μg/(m3·a),呈现先上升后下降的趋势,下降速率小于上升速率;O3浓度的季节性变化特征表现为夏季>秋季>春季>冬季. ②2014—2020年O3轻度污染天数占比最大且呈上升趋势,除北京市外,其他城市夏季O3中度污染天数上升趋势明显. ③2017—2020年O3浓度与CO、NO2浓度的显著负相关性在夏季和冬季有所增强. O3与SO2浓度的关系由2014—2017年春季、夏季和秋季的显著负相关变为2017—2020年夏季和冬季的显著正相关(P<0.05). ④春季和秋季O3浓度与日均气温呈显著正相关,夏季和冬季O3浓度与相对湿度呈显著负相关,与日均风速的相关性则相对较弱. 研究显示,“2+26”城市O3污染协调治理成效显著,需在保持现有NOx控制力度基础上强化VOCs控制,加强SO2治理,进一步遏制夏季O3浓度上升.   相似文献   

15.
秦皇岛海域微微藻褐潮遥感监测方法初探   总被引:1,自引:1,他引:0  
微微藻褐潮在我国是一种新出现的海洋生态灾害。本文针对秦皇岛海域微微藻褐潮高发区,探讨利用卫星遥感技术监测微微藻褐潮的可行性。首先利用MODIS数据反演秦皇岛海域叶绿素a(Chl a)浓度和海面温度(SST)判别水色异常区域,然后通过HJ-1号卫星真彩色影像中褐潮水体与非褐潮水体之间的水色差异,综合判读褐潮,最后以2014年5月秦皇岛海域的卫星遥感数据为实验数据进行实例研究。结果表明,当Chl a≥2.5 mg/m3和15℃≤SST≤25℃时为海水水色异常阈值,并且褐潮水体在HJ-1号卫星真彩色影像中呈明显的黄绿色,该综合判别法用于微微藻褐潮监测是可行的,这为进一步开展微微藻褐潮业务化监测奠定了基础。  相似文献   

16.
利用Morlet小波方法分析北京市2008~2017年PM2.5资料,结果表明,北京市PM2.5浓度存在显著的日变化、周变化、以及季节和年变化周期性特征,并且秋冬季的周期性特征显著高于春夏季.结合气象资料,包括水平风速、大气边界层高度、以及大气稳定度指数等,分析PM2.5不同周期性变化对应的主要影响机制表明:大气边界层过程是PM2.5日变化的主要影响机制,导致PM2.5浓度白天低、夜间高.秋冬季PM2.5日变化幅度高于春夏季;天气过程是PM2.5周变化的主要机制,PM2.5浓度与天气变化过程带来的风速变化和边界层高度呈强反相关关系;PM2.5的季节变化与大气扩散能力的季节变化密切相关,秋冬季减弱的大气扩散能力加速了PM2.5在近地面累积,春夏季则相反.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号