首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
Surface O3 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NO x -VOC-sensitivity regimes complicates the control-decision making. In this paper, the indicator method was used to establish the relationship between O3 sensitivity and assessment indicators. Six popular ratios indicating ozone-precursor sensitivity, HCHO/NO y , H2O2/ HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z , were evaluated based on the distribution of NOx- and VOC-sensitive regimes. WRF-Chem was used to study a serious ozone episode in fall over the Pearl River Delta (PRD). It was found that the south-west of the PRD is characterized by a VOCsensitive regime, while its north-east is NO x -sensitive, with a sharp transition area between the two regimes. All indicators produced good representations of the elevated ozone hours in the episode on 6 November 2009, with H2O2/HNO3 being the best indicator. The threshold sensitivity levels for HCHO/NOy, H2O2/HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z were estimated to be 0.41, 0.55, 10.2, 14.0, 19.1, and 0.38, respectively. Threshold intervals for the indicators H2O2/HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z were able to identify more than 95% of VOC- and NO x -sensitive grids. The ozone episode on 16 November 16 2008 was used to independently verify the results, and it was found that only H2O2/HNO3 and H2O2/NO z were able to differentiate the ozone sensitivity regime well. Hence, these two ratios are suggested as the most appropriate indicators for identifying fall ozone sensitivity in the PRD. Since the species used for indicators have seasonal variation, the utility of those indicators for other seasons should be investigated in the future work.
  相似文献   

2.
The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NO2) based on a high precision NO x instrument with 1 min time resolution. Parallel measurements of the ambient j(NO2) by using the CA and a commercial spectroradiometer (SR) were conducted at a typical urban site (Peking University Urban Environmental Monitoring Station) in Beijing. In general, good agreement was achieved between the CA and SR data with a high linear correlation coefficient (R 2 = 0.977) and a regression slope of 1.12. The regression offset was negligible compared to the measured signal level. The j(NO2) data were calculated using the tropospheric ultraviolet visible radiation (TUV) model, which was constrained to observe aerosol optical properties. The calculated j(NO2) was intermediate between the results obtained with CA and SR, demonstrating the consistency of all the parameters observed at this site. The good agreement between the CA and SR data, and the consistency with the TUV model results, demonstrate the good performance of the installed SR instrument. Since a drift of the SR sensitivity is expected by the manufacturer, we propose a regular check of the data acquired via SR against those obtained by CA for long-term delivery of a high quality series of j(NO2) data. Establishing such a time series will be invaluable for analyzing the long-term atmospheric oxidation capacity trends as well as O3 pollution for urban Beijing.
  相似文献   

3.
We implemented the online coupled WRF-Chem model to reproduce the 2013 January haze event in North China, and evaluated simulated meteorological and chemical fields using multiple observations. The comparisons suggest that temperature and relative humidity (RH) were simulated well (mean biases are–0.2K and 2.7%, respectively), but wind speeds were overestimated (mean bias is 0.5 m?s–1). At the Beijing station, sulfur dioxide (SO2) concentrations were overpredicted and sulfate concentrations were largely underpredicted, which may result from uncertainties in SO2 emissions and missing heterogeneous oxidation in current model. We conducted three parallel experiments to examine the impacts of doubling SO2 emissions and incorporating heterogeneous oxidation of dissolved SO2 by nitrogen dioxide (NO2) on sulfate formation during winter haze. The results suggest that doubling SO2 emissions do not significantly affect sulfate concentrations, but adding heterogeneous oxidation of dissolved SO2 by NO2 substantially improve simulations of sulfate and other inorganic aerosols. Although the enhanced SO2 to sulfate conversion in the HetS (heterogeneous oxidation by NO2) case reduces SO2 concentrations, it is still largely overestimated by the model, indicating the overestimations of SO2 concentrations in the North China Plain (NCP) are mostly due to errors in SO2 emission inventory.
  相似文献   

4.
Post-treatment impacts of a novel combined hydrogen peroxide (H2O2) oxidation and WOx/ZrO2 catalysis used for the removal of 1,4-dioxane and chlorinated volatile organic compound (CVOC) contaminants were investigated in soil and groundwater microbial community. This treatment train removed ~90% 1,4-dioxane regardless of initial concentrations of 1,4-dioxane and CVOCs. The Illumina Miseq platform and bioinformatics were used to study the changes to microbial community structure. This approach determined that dynamic shifts of microbiomes were associated with conditions specific to treatments as well as 1,4-dioxane and CVOCs mixtures. The biodiversity was observed to decrease only after oxidation under conditions that included high levels of 1,4-dioxane and CVOCs, but increased when 1,4-dioxane was present without CVOCs. WOx/ZrO2 catalysis reduced biodiversity across all conditions. Taxonomic classification demonstrated oxidative tolerance for members of the genera Massilia and Rhodococcus, while catalyst tolerance was observed for members of the genera Sphingomonas and Devosia. Linear discriminant analysis effect size was a useful statistical tool to highlight representative microbes, while the multidimensional analysis elucidated the separation of microbiomes under the low 1,4-dioxane-only condition from all other conditions containing CVOCs, as well as the differences of microbial population among original, post-oxidation, and post-catalysis states. The results of this study enhance our understanding of microbial community responses to a promising chemical treatment train, and the metagenomic analysis will help practitioners predict the microbial community status during the post-treatment period, which may have consequences for long-term management strategies that include additional biodegradation treatment or natural attenuation.
  相似文献   

5.
Chromium oxide and manganese oxide promoted ZrO2-CeO2 catalysts were prepared by a homogeneous precipitation method for the selective catalytic reduction of NO x with NH3. A series of characterization including X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Brunauer–Emmett–Teller (BET) surface area analysis, H2 temperatureprogrammed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the influence of the physicochemical properties on NH3-SCR activity. Cr-Zr-Ce and Mn-Zr-Ce catalysts are much more active than ZrO2-CeO2 binary oxide for the low temperature NH3-SCR, mainly because of the high specific surface area, more surface oxygen species, improved reducibility derived from synergistic effect among different elements. Mn-Zr-Ce catalyst exhibited high tolerance to SO2 and H2O. Cr-Zr-Ce mixed oxide exhibited>80% NO x conversion at a wide temperature window of 100°C–300°C. In situ DRIFT studies showed that the addition of Cr is beneficial to the formation of Bronsted acid sites and prevents the formation of stable nitrate species because of the presence of Cr6 +. The present mixed oxide can be a candidate for the low temperature abatement of NO x .
  相似文献   

6.
In the recent years, photocatalytic self-cleaning and “depolluting” materials have been suggested as a remediation technology mainly for NO x and aromatic VOCs in urban areas. A number of products incorporating the aforementioned technology have been made commercially available with the aim to improve urban air quality. These commercial products are based on the photocatalytic properties of a thin layer of TiO2 at the surface of the material (such as glass, pavement, etc.) or embedded in paints or concrete. The use of TiO2 photocatalysts as an emerging air pollution control technology has been reported in many locations worldwide. However, up to now, the effectiveness measured in situ and the expected positive impact on air quality of this relatively new technology has only been demonstrated in a limited manner. Assessing and demonstrating the effectiveness of these depolluting techniques in real scale applications aims to create a real added value, in terms of policy making (i.e., implementing air quality strategies) and economics (by providing a demonstration of the actual performance of a new technique).
  相似文献   

7.
We assessed the contamination levels of Mn, Zn, Cr, Cu, Ni, Pb, As and Hg and the risks posed by these potentially harmful elements in top-soils around a municipal solid waste incinerator (MSWI).We collected 20 soil samples, with an average pH of 8.1, and another fly ash sample emitted from the MSWI to investigate the concentrations of these elements in soils. We determined the concentrations of these elements by inductively coupled plasma–optical emission spectrometer (ICP-OES), except for Hg, which we measured by AF-610B atomic fluorescence spectrometer (AFS). We assessed the risks of these elements through the use of geoaccumulation index (I geo), potential ecological risk index (RI), hazard quotient (HQ i ) and cancer risk (Risk i ). The results showed that concentrations of potentially harmful elements in soil were influenced by the wind direction, and the concentrations of most elements were higher in the area northwest of the MSWI, compared with the area southeast of the incinerator, with the exception of As; these results were in accordance with those results acquired from our contour maps. According to the I geo values, some soil samples were clearly polluted by Hg emissions. However, the health risk assessment indicated that the concentrations of Hg and other elements in soil did not pose non-carcinogenic risks to the local populations. This was also the case for the carcinogenic risks posed by As, Cr, and Ni. The carcinogenic risk posed by As was higher, in the range 6.49 × 10–6–9.58 × 10–6, but this was still considered to be an acceptable level of risk.
  相似文献   

8.
We designed photoelectrochemical cells to achieve efficient oxidation of rhodamine B (RhB) without the need for photocatalyst or supporting electrolyte. RhB, the metal anode/cathode, and O2 formed an energy-relay structure, enabling the efficient formation of O 2 species under ultraviolet illumination. In a single-compartment cell (S cell) containing a titanium (Ti) anode, Ti cathode, and 10 mg·mL–1 RhB in water, the zero-order rate constant of the photoelectrochemical oxidation (kPEC) of RhB was 0.049 mg·L–1·min–1, while those of the photochemical and electrochemical oxidations of RhB were nearly zero. kPEC remained almost the same when 0.5 mol·L–1 Na2SO4 was included in the reactive solution, regardless of the increase in the photocurrent of the S cell. The kPEC of the illuminated anode compartment in the two-compartment cell, including a Ti anode, Ti cathode, and 10 mg·mL–1 RhB in water, was higher than that of the S cell. These results support a simple, eco-friendly, and energysaving method to realize the efficient degradation of RhB.
  相似文献   

9.
Wet deposition scavenges particles and particle-associated bacteria from the air column, but the impact of raindrops on various surfaces on Earth causes emission of surface-associated bacteria into the air column. Thus, after rainfall, these two mechanisms are expected to cause changes in airborne bacterial community composition (BCC). In this study, aerosol samples were collected at a suburban site in Seoul, Korea before and after three heavy rainfall events in April, May, and July 2011. BCC was investigated by pyrosequencing the 16S rRNA gene in aerosol samples. Interestingly, the relative abundance of non-spore forming Actinobacteria operational taxonomic units (OTUs) was always higher in post-rain aerosol samples. In particular, the absolute and relative abundances of airborne Propionibacteriaceae always increased after rainfall, whereas those of airborne Firmicutes, including Carnobacteriaceae and Clostridiales, consistently decreased. Marine bacterial sequences, which were temporally important in aerosol samples, also decreased after rainfall events. Further, increases in pathogen-like sequences were often observed in post-rain air samples. Rainfall events seemed to affect airborne BCCs by the combined action of the two mechanisms, with potentially adverse effects on human and plant health.
  相似文献   

10.
The Pearl River Delta (PRD) is one of the most industrialized, urbanized and populated regions in China, and thus has been long suffering from severe air pollutions. Space data provide a unique perspective for investigating the atmospheric environment at a regional scale. By utilizing multiple satellite retrievals from 2005 to 2013, this study presented, for the first time, the spatial patterns and temporal trends of typical air pollutants over PRD and its vicinity. As viewed from space, aerosol optical depth (AOD), NO2 and SO2 all had their higher values at the central part of PRD, and showed clear descending gradients as moving to the outskirt of this region. As to the inter-annual variation, all these pollutants had decreasing trends in PRD during the study period, which generally agreed with the relevant in situ measurements. However, the satellite retrievals differed from ground measurements when addressing NO2 and SO2 in the vicinity of PRD. This work also provides the inter-comparison among PRD and three other metropolitan clusters in China: PRD had relatively high AOD, moderate NO2 and low SO2 levels, and it was the only region achieving the effective reduction of NO2 and SO2 during last decade. Unlike the previous three pollutants, HCHO observed by satellite showed very special patterns: it had a relatively homogeneous spatial distribution over both of PRD and its vicinity, and presented an opposite increasing trend from 2005 to 2010. Moreover, PRD had the highest HCHO level among all the metropolitan clusters, hinting a considerable contribution of biogenic origins of HCHO in PRD.
  相似文献   

11.
This first nationwide survey was conducted to evaluate the overall performance of the circulating fluidized bed (CFB) incineration of municipal solid waste (MSW) in 2014-2015 in China. Total 23 CFB incineration power plants were evaluated. The data for monthly average flue gas emission of particles, CO, NO x , SO2 and HCl were collected over 12 consecutive months. The data were analyzed to assess the overall performance of CFB incineration by applying the Mahalanobis distance as a multivariate outlier detection method. Although the flue gas emission parameters had met the Chinese national emission standards, there were 11 total outliers (abnormal behavior) detected in 6 out of 23 CFB incineration power plants from the perspective of the MSWincineration performance. The results demonstrate that it is more important for a better performance of CFBs to reduce the frequencies of the MSW load changes, rather than the magnitudes of the MSW load changes, particularly reducing the frequencies in the range of 10% and more of the load changes, under the same and stable conditions. Furthermore, the overloading occurs more often than the underloading during the operation of the CFB incineration power plants in China. The frequent overloading is 0% to 30% of the designed capacity. To achieve the stable performance of CFBs in practice, an appropriately designed MSW storage capacity is suggested to build in a plant to buffer and reduce the frequency of the load changes.
  相似文献   

12.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

13.
Nutrients and water play an important role in microalgae cultivation. Using wastewater as a culture medium is a promising alternative to recycle nutrients and water, and for further developing microalgae-based products. In the present study, two species of microalgae, Chlorella sp. (high ammonia nitrogen tolerance) and Spirulina platensis (S. platensis, high growth rate), were cultured by using poultry wastewater through a two-stage cultivation system for algal biomass production. Ultrafiltration (UF) or centrifuge was used to harvest Chlorella sp. from the first cultivation stage and to recycle culture medium for S. platensis growth in the second cultivation stage. Results showed the two-stage cultivation system produced high microalgae biomass including 0.39 g·L–1Chlorella sp. and 3.45 g·L–1S. platensis in the first-stage and second-stage, respectively. In addition, the removal efficiencies of NH4+ reached 19% and almost 100% in the first and the second stage, respectively. Total phosphorus (TP) removal reached 17% and 83%, and total organic carbon (TOC) removal reached 55% and 72% in the first and the second stage, respectively. UF and centrifuge can recycle 96.8% and 100% water, respectively. This study provides a new method for the combined of pure microalgae cultivation and wastewater treatment with culture medium recycling.
  相似文献   

14.
To improve nitrogen removal performance of wastewater treatment plants (WWTPs), it is essential to understand the behavior of nitrogen cycling communities, which comprise various microorganisms. This study characterized the quantity and diversity of nitrogen cycling genes in various processes of municipal WWTPs by employing two molecular-based methods:most probable number-polymerase chain reaction (MPN-PCR) and DNA microarray. MPN-PCR analysis revealed that gene quantities were not statistically different among processes, suggesting that conventional activated sludge processes (CAS) are similar to nitrogen removal processes in their ability to retain an adequate population of nitrogen cycling microorganisms. Furthermore, most processes in the WWTPs that were researched shared a pattern:the nirS and the bacterial amoA genes were more abundant than the nirK and archaeal amoA genes, respectively. DNA microarray analysis revealed that several kinds of nitrification and denitrification genes were detected in both CAS and anaerobic-oxic processes (AO), whereas limited genes were detected in nitrogen removal processes. Results of this study suggest that CAS maintains a diverse community of nitrogen cycling microorganisms; moreover, the microbial communities in nitrogen removal processes may be specific.
  相似文献   

15.
Flow cytometry (FCM) has been widely used in multi-parametric assessment of cells in various research fields, especially in environmental sciences. This study detected the metabolic activity of Escherichia coli and Staphylococcus aureus by using an FCM method based on 5-cyano-2,3-ditolyltetrazolium chloride (CTC); the accuracy of this method was enhanced by adding SYTO 9 and 10%R2A broth. The disinfection effects of chlorine, chloramine, and UV were subsequently evaluated by FCM methods. Chlorine demonstrated stronger and faster destructive effects on cytomembrane than chloramine, and nucleic acids decomposed afterwards. The metabolic activity of the bacteria persisted after the cytomembranewas damaged as detected using CTC. Low-pressure (LP) UV or medium-pressure (MP) UV treatments exerted no significant effects on membrane permeability. The metabolic activity of the bacteria decreased with increasing UV dosage, and MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Furthermore, the membrane of Gram-positive S. aureus was more resistant to chlorine/chloramine than that of Gram-negative E. coli. In addition, S. aureus showed higher resistance to UV irradiation than E. coli.
  相似文献   

16.
Petroleum hydrocarbons, mainly consisting of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), are considered as priority pollutants and biohazards in the environment, eventually affecting the ecosystem and human health. Though many previous studies have investigated the change of bacterial community and alkane degraders during the degradation of petroleum hydrocarbons, there is still lack of understanding on the impacts of soil alkane contamination level. In the present study, microcosms with different n-alkane contamination (1%, 3% and 5%) were set up and our results indicated a complete alkane degradation after 30 and 50 days in 1%- and 3%-alkane treatments, respectively. In all the treatments, alkanes with medium-chain length (C11-C14) were preferentially degraded by soil microbes, followed by C27-alkane in 3% and 5% treatments. Alkane contamination level slightly altered soil bacterial community, and the main change was the presence and abundance of dominant alkane degraders. Thermogemmatisporaceae, Gemmataceae and Thermodesulfovibrionaceae were highly related to the degradation of C14- and C27-alkanes in 5% treatment, but linked to alkanes with medium-chain (C11-C18) in 1% treatment and C21-alkane in 3% treatment, respectively. Additionally, we compared the abundance of three alkane-monooxygenase genes, e.g., alk_A, alk_P and alk_R. The abundance of alk_R gene was highest in soils, and alk_P gene was more correlated with alkane degradation efficiency, especially in 5% treatment. Our results suggested that alkane contamination level showed non-negligible effects on soil bacterial communities to some extents, and particularly shaped alkane degraders and degrading genes significantly. This study provides a better understanding on the response of alkane degraders and bacterial communities to soil alkane concentrations, which affects their biodegradation process.
  相似文献   

17.
Three acid-producing strains, AFB-1, AFB-2 and AFB-3, were isolated during this study, and their roles in anaerobic digestion of waste activated sludge (WAS) were evaluated. Data of 16S rRNA method showed that AFB-1 and AFB-2 were Bacillus coagulans, and AFB-3 was Escherichia coli. The removal in terms of volatile solids (VS) and total chemical oxygen demand (TCOD) was maximized at 42.7% and 44.7% by inoculating Bacillus coagulans AFB-1. Besides, the optimal inoculum concentration of Bacillus coagulans AFB-1 was 30% (v/v). Solubilization degree experiments indicated that solubilization ratios (SR) of WAS reached 20.8%±2.2%, 17.7%±1.48%, and 11.1%±1.53%. Volatile fatty acids (VFAs) concentrations and compositions were also explored with a gas chromatograph. The results showed that VFAs improved by 98.5%, 53.0% and 11.6% than those of the control, respectively. Biochemical methane potential (BMP) experiments revealed that biogas production increased by 90.7% and 75.3% when inoculating with Bacillus coagulans AFB-1 and AFB-2. These results confirmed that the isolated acid-producing bacteria, especially Bacillus coagulans, was a good candidate for anaerobic digestion of WAS.
  相似文献   

18.
Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoactivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of deadend filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage MS2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming off the membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-TiO2 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.
  相似文献   

19.
To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallicbased Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NO x production but decreases NH3 production.
  相似文献   

20.
Sulfamethoxazole (SMX) and trimethoprim (TMP) are two critical sulfonamide antibiotics with enhanced persistency that are commonly found in wastewater treatment plants. Recently, more scholars have showed interests in how SMX and TMP antibiotics are biodegraded, which is seldom reported previously. Novel artificial composite soil treatment systems were designed to allow biodegradation to effectively remove adsorbed SMX and TMP from the surface of clay ceramsites. A synergy between sorption and biodegradation improves the removal of SMX and TMP. One highly efficient SMX and TMP degrading bacteria strain, Bacillus subtilis, was isolated from column reactors. In the removal process, this bacteria degrade SMX and TMP to NH 4 + , and then further convert NH 4 + to NO 3 in a continuous process. Microbial adaptation time was longer for SMX degradation than for TMP, and SMX was also able to be degraded in aerobic conditions. Importantly, the artificial composite soil treatment system is suitable for application in practical engineering.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号