首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
为给冷冻取芯过程中瓦斯解吸模拟试验提供依据,依托自主研制的取芯管管壁温度自动采集装置,研究不同取芯深度及煤体破坏类型下取芯过程管壁温度变化特性。结果表明:在原生结构煤中取芯时,取芯过程管壁温度变化主要分为3个阶段,即稳定不变阶段、快速上升阶段与缓慢下降阶段,分别对应进钻、取芯与退钻过程;在构造煤中取芯时,管壁温度变化可分为缓慢上升阶段、快速上升阶段与缓慢下降阶段,分别对应进钻、取芯与退钻过程。在构造煤中,取芯深度越大,取芯管管壁升温幅度越大,取样过程中管壁温度峰值越大,且在取芯过程中,取芯管管壁温度传感器B1,B2,B3存在温升滞后现象;同一取芯深度,煤体破碎程度越大,取芯管管壁升温幅度越小,取芯结束时取芯管管壁温度越低。  相似文献   

2.
为探究冷冻取芯过程煤芯瓦斯解吸特性,基于模拟试验的相似性,依托自主研发的含瓦斯煤冷冻取芯响应特性测试平台,开展不同变质程度煤样(长焰煤、贫瘦煤、无烟煤)及不同吸附平衡压力(1.0,2.0,3.0,4.0 MPa)下冷冻取芯过程煤芯瓦斯解吸特性试验研究。研究结果表明:冷冻取芯过程中,煤芯瓦斯解吸量与吸附平衡压力及煤变质程度呈正相关关系;在煤芯瓦斯解吸过程中存在倒吸现象,煤与瓦斯初始吸附平衡压力越大,煤的变质程度越高,倒吸开始时间越迟;冷冻取芯过程中,瓦斯解吸速度与吸附平衡压力及煤变质程度呈正相关关系,且瓦斯解吸速度随吸附平衡压力及煤变质程度变化曲线符合幂函数关系。  相似文献   

3.
为了研究热量在低温取芯过程中传递的方式,以型煤为研究对象,使用自制低温取芯模拟装置,通过实验并结合数值模拟,对低温取芯过程热量传递方式进行研究,进而分析煤芯温度的变化规律。研究结果表明:甲烷的存在降低了煤样的热交换速率,使煤芯温度变化滞后于煤样罐壁温度变化;煤体内部温度分布存在差异,煤样中心轴线不同半径处的圆柱面构成变温过程的等温面,在降温过程,热量沿径向由煤样内部向外部传递,升温过程,热量沿径向由外部向内部传递;低温取芯过程热量传递同时存在3种方式:热传导、热对流,煤体表面与罐体内壁表面之间的热辐射,以热传导方式为主。  相似文献   

4.
为了更准确地测定煤矿井下瓦斯含量,研制出基于煤层钻孔直接机械密闭取芯的瓦斯含量测试装置,使瓦斯解吸和取芯装置一体化。装置 设计的联动关闭部件实现了孔内取芯密闭,避免传统取芯装罐程序,解决了煤芯暴露时间长、瓦斯逸散量大的问题。通过机械密闭取芯技术现 场试验,并与传统方法进行对比分析,32组试验瓦斯含量测定结果比传统方法增加21.8%以上。结果表明:装置实现了在煤层钻孔内直接密闭取 芯功能,简化了测定流程,提高了煤矿瓦斯含量测定精度。应用该装置可最大限度地减少煤样暴露时间。  相似文献   

5.
为研究取芯管取芯过程中压力与温度对损失瓦斯量的影响,以及t法的偏差,利用自主研发的取芯管取芯过程模拟测试装置,基于模拟试验的相似性,开展不同加热功率下取芯过程模拟试验与室温(30 ℃)对比,以及变温条件下不同吸附压力取芯过程模拟试验。结果表明:前30 min煤芯瓦斯解吸曲线符合Qt=a+b/[1+(t/t0)c]。吸附压力一定时,取芯过程模拟测试的煤芯瓦斯解吸率均大于室温下的对比测试,3~16 min(退钻过程)温度对损失量的影响大于0~3 min(取芯过程);随着加热功率的增加,煤芯瓦斯解吸量增大,煤芯损失瓦斯量的模拟值亦增大;t法推算值与模拟值的绝对误差随加热功率的增大而增大,相对误差在65.08%~70.79%;加热功率一定时,随着吸附压力的增加,煤芯瓦斯解吸量愈大,煤芯损失瓦斯量t法推算值增大,模拟值亦增大;t法推算值与模拟值的绝对误差随吸附压力的增大而增大,相对误差在68.21%~72.13%。  相似文献   

6.
为避免现有的煤层瓦斯含量井下测定方法在取样过程中出现瓦斯损失量较多的情况,提出了低温(0℃及以下)取芯的方法。煤芯温度是影响取芯过程瓦斯损失量的主要因素,使用自制模拟装置,对含瓦斯煤低温环境取芯过程温度变化规律进行了实验研究。研究结果表明:在定量冷冻剂的条件下,保持初始吸附平衡压力不变,随着外加热源热量输出强度的增加,煤芯在低温环境(0℃及以下)持续时间和升温时间均减小,降到所需低温环境的速度很快,均在8 min以内;保持外加热源热量输出强度不变,改变初始吸附平衡压力,煤芯温度降至所需低温环境时间在8 min以内,且低温环境持续时间都能稳定在130 min以上。在实验过程中,煤芯温度呈"U"形变化,经历快速下降、低温维持、温度回升3个阶段。  相似文献   

7.
冷冻取芯过程煤样温度变化特性研究   总被引:1,自引:0,他引:1  
为探究冷冻取芯过程煤样温度变化特性,基于模拟试验的相似性,自主设计冷冻取芯模拟测试试验装置,选取榆家梁矿、首山一矿、六龙煤矿、九里山矿4个矿区不同变质程度煤样,用以测定瓦斯吸附平衡压力为0、1.0、2.0、3.0 MPa下冷冻取芯过程煤样的温度实时变化数据,并统计分析各条件下的数据。研究结果表明:冷冻取芯技术的冷冻效果与煤变质程度及瓦斯吸附平衡压力呈正相关关系;冷冻取芯对含瓦斯煤冷冻效果优于不含瓦斯煤;冷冻取芯对高变质煤冷冻效果优于低变质煤;冷冻取芯过程中,煤样温度随时间变化曲线符合指数函数关系。  相似文献   

8.
瓦斯严重威胁着煤矿的安全生产,煤层瓦斯解吸规律与矿井瓦斯灾害关系非常密切。本文首先提出了密闭液封堵条件下的瓦斯解吸实验原理,制定了相应的实验方案;然后,开展了密闭液封堵条件下的煤芯瓦斯解吸规律实验;最后,进行了密闭液封堵煤芯瓦斯的现场取芯试验。研究结果显示,与自由状态下解吸相比,密闭条件下的瓦斯解吸量呈现不同程度的降低,效果显著;在取芯过程中,密闭液能够包裹煤芯,该测定技术所获得的煤芯瓦斯解吸量与残存量之和,比普通煤芯取样法平均提高了9%。因此,利用该技术所测得的煤层瓦斯含量,其可靠性与准确率更高。  相似文献   

9.
为保证煤层瓦斯含量测定结果的可靠性和准确性,引入低温冷冻取芯技术,利用高低温吸附试验装置,开展低温变温条件下煤样吸附瓦斯全过程试验研究,并分析降温过程中煤样中瓦斯吸附量变化特征。研究结果表明:在程序降温过程中,煤样罐内煤样温度先缓慢下降后趋于稳定,煤样温度变化集中在前3 h,持续一段时间,3 h后基本趋于稳定,与外界环境温度保持一致;试验温度降低过程中,瓦斯吸附量呈现升高-降低交替变化(总体趋势为升高)的特性,随温度的稳定趋于稳定;瓦斯吸附量降低阶段基本呈线性变化趋势,吸附量下降速率先增大后减小。  相似文献   

10.
为揭示不同温度下瓦斯吸附-解吸-渗流全过程煤体变形的差异性,应用自主研发的煤体瓦斯流固耦合试验系统,研究三轴应力加载下瓦斯吸附-解吸-渗流及全过程煤体变形随温度变化的响应特征。试验结果表明:瓦斯吸附阶段,煤体变形量与吸附时间呈Langmuir型上升变化;瓦斯解吸阶段,煤体变形量与解吸时间呈指数型衰减趋势;瓦斯渗流阶段,煤体变形量与时间呈幂函数上升趋势。瓦斯吸附量、渗透率及过程中煤体变形量均随温度升高而降低,瓦斯解吸率随温度升高而增大;煤体变形量与瓦斯吸附量、解吸量、渗透率呈正相关关系。温度效应对全过程煤体变形具有显著影响。  相似文献   

11.
为研究CO2驱替CH4过程中注气压力对气体解吸特性的影响,采用自主搭建的驱替实验平台,在0.6,0.8,1.0 MPa不同注气压力下进行驱替实验,研究CO2驱替CH4过程中煤层温度、气体浓度、置换效率和渗透率等变化规律。实验结果表明:提高CO2注气压力可提高CO2置换驱替煤层CH4的效果。随着注气压力增大,CH4累计解吸量增大,CO2突破时间越短,CO2封存量越大,置换效率升高,驱替比下降。注气压力为0.6,0.8,1.0 MPa时,CH4累计解吸量分别为90.2,94.1,97.8 L;CO2封存量分别为19.73,19.92,20.21 mL/g;置换效率由76.9%上升到80.2%再到82.9%,驱替比由3.28下降到3.17再到3.09。注气驱替CH4过程中煤层温度升高,可分为低速升温、高速升温和趋于平缓阶段。煤层温度最高变化量分别为9.4,11.5,12.7 ℃。同一注气压力下,煤层渗透率变化可分为缓慢增长、急剧下降和趋于稳定阶段。  相似文献   

12.
外加水在渗吸过程中可以促进煤体瓦斯解吸,减小煤层瓦斯含量,从而减少瓦斯事故的发生频率。为了研究含瓦斯煤水分分布规律,采用NMR(核磁共振成像)技术,针对不含瓦斯煤进行定量外加水渗吸实验。研究结果表明:型煤中的水分主要受毛细管力和重力作用的影响;在自下向上吸水和自上向下吸水渗吸过程中,毛细管力作用相同,径向方向上水分扩散速度相近,但在轴向方向上的扩散速度具有明显差异,由于重力作用的影响,分别产生抑制和促进作用;水分三向扩散半径与时间符合朗格缪尔函数关系。  相似文献   

13.
为了研究旋风除尘器内气固流动特性,采用CFD-DEM耦合算法研究不同入口气体速度下旋风除尘器内颗粒流态、静压、径向速度及轴向速度分布特征。结果表明:煤屑颗粒在离心力和径向曳力的作用下以螺旋颗粒条带靠近除尘器的壁面稳定向下移动,随着入口风速的增加煤屑颗粒条带变宽,条带与除尘器的第1次接触的拐点上移,螺距减小;除尘器内部压力轴向变化较小,径向变化较大,随着入口气体速度增加,除尘器壁面附近高压区范围和压力也随之增加,除尘器上方和下方的负压区变宽并朝轴向方向延伸;随入口气体速度增加,除尘器内径向速度和轴向速度逐渐增加,煤屑颗粒在除尘器中部聚集较多,煤屑停留时间变长,入口气体速度为15 m/s时,煤屑颗粒在除尘器内停留时间最长。  相似文献   

14.
为研究注CO2增产煤层气过程中注气温度对煤层渗透特性变化的影响,利用自主研发的CO2置换驱替CH4实验系统,在注气温度为40,50,60 ℃条件下进行CO2置换驱替CH4实验,定量分析置换驱替过程中出口气体流量、孔隙压力以及煤层渗透率等变化规律。研究结果表明:在实验测试的40~60 ℃范围内,提高CO2注入温度有助于产出更多的CH4及封存CO2,CO2注入温度越高,出口混合气体流量和CH4气体流量越大,呈现出先升高后降低并趋于稳定的变化趋势,实验结束时置换体积比分别为2.704,2.741和2.595,注气温度为60 ℃时驱替效果较好,每产出单位体积的CH4注入的CO2量最少;煤层孔隙压力随注气时间呈现先逐渐上升后趋于平稳的变化趋势,逐渐趋近注气压力0.8 MPa;注CO2置换驱替CH4及提高CO2注入温度会降低煤层的渗透性,注气温度恒定时,渗透率随注气时间增加呈现先逐渐降低后趋于平稳的变化规律,注气温度由40 ℃升至60 ℃时,渗透率从0.017 1×10-15 m2下降至0.009 8×10-15 m2,降低幅度为34.50%~42.69%。  相似文献   

15.
为研究真实通风工况下瓦斯爆炸冲击波在复杂管网内的超压演化规律及高温传播规律,采用数值模拟方法,研究角联通风管网模型中各个监测点在不同通风条件下对瓦斯爆炸冲击波超压及高温的影响规律,研究结果表明:瓦斯爆炸冲击波在角联管网传播过程中产生3个局部高压区域,高温气体主要在左、右通路内传播,斜角联分支内只受到微弱影响;管网入口风流的存在,使得爆炸初期冲击波超压经相同距离传播用时更短,峰值更大,破坏力更强;风流的存在使得管网内高温气体传播状态发生改变,斜角联分支与左通路尾部热量发生积聚,温度峰值更大。  相似文献   

16.
为研究冻结煤层温度场演化规律,针对煤层注液冷冻防治煤与瓦斯突出方法,建立热流固(THM)耦合方程,应用COMSOL软件分析冻结过程中渗透率、温度场、有效冻结半径等参数的时空演化规律,并对不同布孔方式冻结效果进行对比。研究结果表明:冻结过程中渗透率与有效冻结半径均先快速增加后缓慢增加,有效冻结半径随冻结时间增加呈幂函数关系;多孔布置冻结孔时,随冻结时间增加,有效冻结范围增大;同一冻结时间,距冻结孔越远,温度变化越缓慢,研究结果可为冻结煤层防治煤与瓦斯突出提供理论指导。  相似文献   

17.
为了研究原位煤体渗透性的各向异性特征,以山西潞安常村矿3号煤层圆柱试样为对象,利用TCQT-Ⅲ型低渗煤层气相驱替增产试验装置,对煤样进行加载,并以氮气注入压力2.0 MPa的条件下,分析垂直层理和平行层理2个方向的煤体变形和渗透率变化特征。实验结果表明:煤样在加载过程中,平行和垂直层理煤样渗透率均随着有效应力的增大而减小,平行层理方向的渗透率始终大于垂直层理方向,应力加载初期渗透率急剧下降,最后逐渐趋于平缓;径向应变的增加量与渗透率呈正相关性,且平行层理相关性大于垂直层理;沿平行层理方向的裂隙度大于沿垂直层理方向,沿垂直层理方向的应变量大于沿平行层理方向;应变增加量均随有效应力的增加而逐渐减小。研究结果可为煤层井网布置及优化提供参考。  相似文献   

18.
为研究管道结构对氢-空预混气体爆炸特性影响,采用实验与数值模拟相结合的方法,分析不同管道结构内氢-空预混气体燃爆时火焰传播进程、爆炸压力、湍流动能变化及流场分布。结果表明:90°弯管对氢-空预混气体爆炸强度增强作用明显高于T型分岔管和直管。火焰阵面在结构突变处褶皱变形较明显,并出现大尺度强湍流和涡团,气团脉动速度与湍流燃烧速率不断增大,氢-空预混气体质量扩散速率与热量扩散速率增大,湍流动能呈迅速上升趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号