首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total carbon storage ranges from 101 to 156 Mg C?ha?1, with the largest carbon stock in the living biomass of long rotation sal forests (82 Mg C?ha?1). The net annual carbon sequestration rates were achieved for fast growing short rotation poplar (8 Mg C?ha?1?yr?1) and Eucalyptus (6 Mg C?ha?1?yr?1) plantations followed by moderate growing teak forests (2 Mg C?ha?1?yr?1) and slow growing long rotation sal forests (1 Mg C?ha?1?yr?1). Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. We also used the model to evaluate the effect of changing rotation length and thinning regime on carbon stocks of forest ecosystem (trees?+?soil) and wood products, respectively for sal and teak forests. The carbon stock in soil and products was less sensitive than carbon stock of trees to the change in rotation length. Extending rotation length from the recommended 120 to 150 years increased the average carbon stock of forest ecosystem (trees?+?soil) by 12%. The net primary productivity was highest (3.7 Mg ha?1?yr?1) when a 60-year rotation length was applied but decreased with increasing rotation length (e.g., 1.7 Mg ha?1?yr?1) at 150 years. Goal of maximum carbon storage and production of more valuable saw logs can be achieved from longer rotation lengths. ‘No thinning’ has the largest biomass, but from an economical perspective, there will be no wood available from thinning operations to replace fossil fuel for bioenergy and to the pulp industry and such patches have high risks of forest fires, insects etc. Extended rotation lengths and reduced thinning intensity could enhance the long-term capacity of forest ecosystems to sequester carbon. While accounting for effects of climate change, a combination of bioenergy and carbon sequestration will be best to mitigation of CO2 emission in the long term.  相似文献   

2.
Recent market slump in rice, less rainfall during monsoon, high temperature and scarcity of water during dry season leads to lower grain yield and less profit from rice cultivation in India. Farmers’ grow upland crops like chickpea (Cicer arietinum), greengram (Vigna radiate), mustard (Brassica nigra), corn (Zea maize), pigeonpea (Cajanus cajan), potato (Solanum tuberosum), sunflower (Helianthus annuus) etc. along with rice (Oryza sativa) during the dry season. However, knowledge of greenhouse gas (GHG) emission from these rice based cropping systems is very limited. In the present study four rice based cropping systems was studied along with rice-rice rotation system as control in respect of GHG emission, yield potential and economic feasibility. Conventional plantation and fertilizer application methodology was followed for each crop. Methane (CH4) and nitrous oxide (N2O) flux from field plots were studied with conventional closed chamber method using gas chromatograph. CH4 flux was recorded highest from rice-rice rotation plots (304.25 kg ha−1). N2O flux was recorded 1.02 kg ha−1 from rice-rice rotation system during wet season. However, during wet season, higher N2O flux (1.93 kg ha−1) was recorded from rice-potato-sesame rotation plots. Annual N2O flux was also recorded significantly low (3.42 kg ha−1) from rice-rice rotation plots and high (6.19 kg ha−1) from rice-chickpea-greengram rotation plots. Significantly lower annual grain yield was recorded from rice-rice rotation plots (9.25 Mg ha−1) whereas it was 18.84 Mg rice eq ha−1 from rice-potato-sesame rotation system. The global warming potential (GWP) of rice-rice rotation system was recorded significantly high (8.62 Mg CO2 ha−1) compare to plots with different rice based cropping systems. Computing all C-emission from cradle-to-grave, highest total C-cost was recorded from the rice-rice rotation system ($62.00 ha−1). We have made an attempt to calculate the C-credit of different rice based cropping systems by considering the difference of C-cost with control. The study suggests that the rice-potato-sesame is most sustainable among different cropping system studied in terms of economic profit ($62.00 ha−1). We have made an attempt to calculate the C-credit of different rice based cropping systems by considering the difference of C-cost with control. The study suggests that the rice-potato-sesame is most sustainable among different cropping system studied in terms of economic profit (1248.21 ha−1) and C-credit ($38.60 ha−1). The result of the study may be limited to the study region; however, the study has potential use in respect to the development of agriculture practice for adaptation to climate change.  相似文献   

3.
Carbon forestry mitigation potential estimates at the global-level are limited by the absence or simplicity of national-level estimates, and similarly national-level estimates are limited by absence of regional-level estimates. The present study aims to estimate the mitigation potential for a large diverse country such as India, based on the GTAP global land classification system of agro-ecological zones (AEZs), as well the Indian AEZ system. The study also estimates the implications of carbon price incentive (US$50 and $100) on mitigation potential in the short-, medium- and long-term, since afforestation and reforestation (A & R) is constrained by lack of investment and financial incentives. The mitigation potential for short and long rotation plantations and natural regeneration was estimated using the GCOMAP global forest model for two land area scenarios. One scenario included only wastelands (29 Mha), and the second enhanced area scenario, included wastelands plus long fallow and marginal croplands (54 Mha). Under the $100 carbon price case, significant additional area (3.6 Mha under the wasteland scenario and 6.4 Mha under the enhanced area scenario) and carbon mitigation is gained in the short-term (2025) compared to the baseline when using the GTAP land classification system. The area brought under A & R increases by 85–100% for the $100 carbon price compared to $50 carbon price in the short-term, indicating the effectiveness of higher carbon price incentives, especially in the short-term. A comparison of estimates of mitigation potential using GTAP and Indian AEZ land classification systems showed that in the short-term, 35% additional C-stock gain is achieved in the $100 carbon price case in the enhanced area scenario of the Indian AEZ system. This difference highlights the role of the land classification system adopted in estimation of aggregate mitigation potential estimates, particularly in the short-term. Uncertainty involved in the estimates of national-level mitigation potential needs to be reduced, by generating reliable estimates of carbon stock gain and losses, and cost and benefit data, for land use sector mitigation options at a scale disaggregated enough to be relevant for national mitigation planning.  相似文献   

4.

Restoration of deforested and drained tropical peat swamp forests is globally relevant in the context of reducing emissions from deforestation and forest degradation. The seasonal flux of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in a restoration concession in Central Kalimantan, Indonesia, was measured in the two contrasting land covers: shrubs and secondary forests growing on peatlands. We found that land covers had high, but insignificantly different, soil carbon stocks of 949?+?56 and 1126?+?147 Mg ha?1, respectively. The mean annual CO2 flux from the soil of shrub areas was 52.4?±?4.1 Mg ha?1 year?1, and from secondary peat swamp forests was 42.9?±?3.6 Mg ha?1 year?1. The significant difference in mean soil temperature in the shrubs (31.2 °C) and secondary peat swamp forests (26.3 °C) was responsible for the difference in total CO2 fluxes of these sites. We also found the mean annual total soil respiration was almost equally partitioned between heterotrophic respiration (20.8?+?1.3 Mg ha?1 year?1) and autotrophic respiration (22.6?+?1.5 Mg ha?1 year?1). Lowered ground water level up to ??40 cm in both land covers caused the increase of CO2 fluxes to 40–75%. These numbers contribute to the provision of emission factors for rewetted organic soils required in the national reporting using the 2013 Supplement of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for wetlands as part of the obligation under the United Nations Framework Convention on Climate Change (UNFCCC).

  相似文献   

5.
Using a case study of the Lake Abitibi Model Forest (LAMF), this study aims to assess the temporal and spatial variability in carbon storage during 1990–2000, and to present a comprehensive estimation of the carbon budget for LAMF's ecosystems. As well, it provided the information needed by local forest managers to develop ecological and carbon-based indicators and monitor the sustainability of forest ecosystems. Temporal and spatial carbon dynamics were simulated at the landscape level using ecosystem model TRIPLEX1.0 and Geographical Information System (GIS). The simulated net primary productivity (NPP) and carbon storage in forest biomass and soil were compared with field data and results from other studies for Canada's boreal forests. The results show that simulated NPP ranged from 3.26 to 3.34 tC ha−1 yr−1 in the 1990s and was consistent with the range measured during the Boreal Ecosystem-Atmosphere Studies (BOREAS) in central Canada. Modeled NPP was also compared with the estimation from remote sensing data. The density of total above-and belowground biomass was 125.3, 111.8, and 106.5 tC ha−1 for black spruce, trembling aspen, and jack pine in the LAMF ecosystem, respectively. The total carbon density of forested land was estimated at 154.4 tC ha−1 with the proportion of 4:6 for total biomass and soil. The analysis of net carbon balance of ecosystem suggested that the LAMF forest ecosystem was acting as a carbon sink with an allowable harvest in the 1990s.  相似文献   

6.
Bamboo in climate change and rural livelihoods   总被引:1,自引:0,他引:1  
Climate change negotiations, assessments, and greenhouse gas inventory guidelines have all but bypassed bamboo. Disallowing stands of tree-like bamboos as forests disparages their function in the carbon (C) cycle, and disregards pillars of smallholder livelihoods. Exposing bamboo not as a panacea, but as an overlooked option for C conservation, sequestration, and adaptation, we screen details of distribution, morphology, growth, physiology, and impacts for pertinence to climate change. Additional to 40 million hectares of existing bamboo forests, many potential host countries for C projects harbor suitable sites. Definitions, methods and default values, such as the root/shoot- ratio, biomass conversion factors, allometric equations and sampling variables need adjusting. Rapid maturation, persistent rhizomes, a rich palette of species, and wind-firmness may mitigate risk. Bamboos can accommodate agro-and urban forestry, and reign in unsustainable shifting cultivation. Distribution functions of bamboo biomass stocks and growths do not deviate drastically from those of trees. If anything, bamboo stocks are slightly lower, and growths slightly higher, with medians of 87 t*ha−1 and 10.5 t*ha−1*yr−1, respectively. However, bamboo’s outstanding socio-economic effects might well determine its future in mitigation and adaptation. Early, continuous yields, selective harvesting on even small parcels of land, low capital and high labor intensity, virtually 100% conversion efficiency to about 1,500 products, and, typically, 75% of economic returns benefiting rural people are advantageous attributes. Regional studies on suitability, silviculture, yields, economics, risk, and C assessment would strengthen bamboo’s function as ‘the poor man’s timber’ and promote its niche as the smallholder’s C sink.  相似文献   

7.
Algal biofuel production and mitigation potential in India   总被引:1,自引:1,他引:0  
Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5?C12 g/m2/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.  相似文献   

8.
Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for Japan's agriculture. In this context, changes in soil C stocks in northern Japan's arable farming area over the period of 1971-2010, specifically in the region's typical Andosol (volcanic ash-derived) and non-Andosol soils, were simulated using soil-type-specific versions of the Rothamsted carbon model (RothC). The models were then used to predict the effects, over the period of 2011-2050, of three potential management scenarios: (i) baseline: maintenance of present crop residue returns and green manure crops, as well as composted cattle manure C inputs (24-34 Mg ha−1 yr−1 applied on 3-55% of arable land according to crop), (ii) cattle manure: all arable fields receive 20 Mg ha−1 yr−1 of composted cattle manure, increased C inputs from crop residues and present C inputs from green manure are assumed, and (iii) minimum input: all above-ground crop residues removed, no green manure crop, no cattle manure applied. Above- and below-ground residue biomass C inputs contributed by 8 major crops, and oats employed as a green manure crop, were drawn from yield statistics recorded at the township level and crop-specific allometric relationships (e.g. ratio of above-ground residue biomass to harvested biomass on a dry weight basis). Estimated crop net primary production (NPP) ranged from 1.60 Mg C ha−1 yr−1 for adzuki bean to 8.75 Mg C ha−1 yr−1 for silage corn. For the whole region (143 × 103 ha), overall NPP was estimated at 952 ± 60 Gg C yr−1 (6.66 ± 0.42 Mg C ha−1 yr−1). Plant C inputs to the soil also varied widely amongst the crops, ranging from 0.50 Mg C ha−1 yr−1 for potato to 3.26 Mg C ha−1 yr−1 for winter wheat. Annual plant C inputs to the soil were estimated at 360 ± 45 Gg C yr−1 (2.52 ± 0.32 Mg C ha−1 yr−1), representing 38% of the cropland NPP. The RothC simulations suggest that the region's soil C stock (0-30 cm horizon), across all soils, has decreased from 13.96 Tg C (107.5 Mg C ha−1 yr−1) in 1970 to 12.46 Tg C (96.0 Mg C ha−1 yr−1) in 2010. For the baseline, cattle manure and minimum input scenarios, soil C stocks of 12.13, 13.27 and 9.82 Tg C, respectively, were projected for 2050. Over the period of 2011-2050, compared to the baseline scenario, soil C was sequestered (+0.219 Mg C ha−1 yr−1) by enhanced cattle manure application, but was lost (−0.445 Mg C ha−1 yr−1) under the minimum input scenario. The effect of variations of input data (monthly mean temperature, monthly precipitation, plant C inputs and cattle manure C inputs) on the uncertainty of model outputs for each scenario was assessed using a Monte Carlo approach. Taking into account the uncertainty (standard deviation as % of the mean) for the model's outputs for 2050 (5.1-6.1%), it is clear that the minimum input scenario would lead to a rapid decrease in soil C stocks for arable farmlands in northern Japan.  相似文献   

9.
Climate change is one of the most pressing environmental problems humanity is facing today. Forest ecosystems serve as a source or sink of greenhouse gases, primarily CO2. With support from the Canadian Climate Change Fund, the Community-based Natural Resource Management for Carbon Sequestration project in East Timor (CBNRM-ET) was implemented to “maintain carbon (C) stocks and increase C sequestration through the development of community-based resource management systems that will simultaneously improve livelihood security”. Project sites were in the Laclubar and Remexio Sub-districts of the Laclo watershed. The objective of this study was to quantify baseline C stocks and sequestration benefits of project components (reforestation with fast-growing species, primarily Casuarina equisetifolia, and agroforestry involving integration of Paraserianthes falcataria). Field measurements show that mature stands (≥30 years) of P. falcataria and C. equisetifolia contain up to 200 Mg C ha−1 in above ground biomass, indicating the vast potential of project sites to sequester carbon. Baseline C stocks in above ground biomass were very low in both Laclubar (6.2 Mg C ha−1 for reforestation sites and 5.2 Mg C ha−1 for agroforestry sites and Remexio (3.0 Mg C ha−1 for reforestation and 2.5 Mg C ha−1 for agroforestry). Baseline soil organic C levels were much higher reaching up to 160 Mg C ha−1 in Laclubar and 70 Mg C ha−1 in Remexio. For the next 25 years, it is projected that 137 671 Mg C and 84 621 Mg C will be sequestered under high- and low C stock scenarios, respectively.  相似文献   

10.
This paper provides a methodology for generating forest management plans, which explicitly maximize carbon (C) sequestration at the forest-landscape level. This paper takes advantage of concepts first presented in a paper by Meng et al. (2003; Mitigation Adaptation Strategies Global Change 8:371–403) by integrating C-sequestration objective functions in existing wood supply models. Carbon-stock calculations performed in WoodstockTM (RemSoft Inc.) are based on C yields generated from volume table data obtained from local Forest Development Survey plots and a series of wood volume-to-C content conversion factors specified in von Mirbach (2000). The approach is used to investigate the impact of three demonstration forest-management scenarios on the C budget in a 110,000 ha forest in south-central New Brunswick, Canada. Explicit demonstration scenarios addressed include (1) maximizing timber extraction either by clearcut or selection harvesting for greatest revenue generation, (2) maximizing total C storage in the forest landscape and in wood products generated from harvesting, and (3) maximizing C storage together with revenue generation. The level of clearcut harvesting was greatest for scenario 1 (≥15 × 104 m3 of wood and ≥943 ha of land per harvesting period), and least for scenario 2 (=0 m3 per harvesting period) where selection harvesting dominated. Because softwood saw logs were worth more than pulpwood ($60 m−3 vs. $40 m−3) and were strategic to the long-term storage of C, the production of softwood saw logs exceeded the production of pulpwood in all scenarios. Selection harvesting was generally the preferred harvesting method across scenarios. Only in scenario 1 did levels of clearcut harvesting occasionally exceed those of selection harvesting, mainly in the removal of old, dilapidated stands early in the simulation (i.e., during periods 1 through 3). Scenario 2 provided the greatest total C-storage increase over 80 years (i.e., 14 × 106 Mg C, or roughly 264 Mg ha−1) at a cost of $111 per Mg C due to lost revenues. Scenarios 3 and 1 produced reduced storage rates of roughly 9 × 106 Mg C and 3 × 106 Mg C, respectively; about 64% and 22% of the total, 80-year C storage calculated in scenario 2. The bulk of the C in scenario 2 was stored in the forest, amounting to about 76% of the total C sequestered.  相似文献   

11.
A method is presented for estimating the global warming impact of forest biomass life cycles with respect to their functionally equivalent alternatives based on fossil fuels and non-renewable material sources. In the method, absolute global warming potentials (AGWP) of both the temporary carbon (C) debt of forest biomass stock and the C credit of the biomass use cycle displacing the fossil and non-renewable alternative are estimated as a function of the time frame of climate change mitigation. Dimensionless global warming potential (GWP) factors, GWPbio and GWPbiouse, are derived. As numerical examples, 1) bioenergy from boreal forest harvest residues to displace fossil fuels and 2) the use of wood for material substitution are considered. The GWP-based indicator leads to longer payback times, i.e. the time frame needed for the biomass option to be superior to its fossil-based alternative, than when just the cumulative balance of biogenic and fossil C stocks is considered. The warming payback time increases substantially with the residue diameter and low displacement factor (DF) of fossil C emissions. For the 35-cm stumps, the payback time appears to be more than 100 years in the climate conditions of Southern Finland when DF is lower than 0.5 in instant use and lower than 0.6 in continuous stump use. Wood use for construction appears to be more beneficial because, in addition to displaced emissions due to by-product bioenergy and material substitution, a significant part of round wood is sequestered into wood products for a long period, and even a zero payback time would be attainable with reasonable DFs.  相似文献   

12.
The evaluation of biospheric role of the boreal forests in the accumulation of carbon is connected with the evaluation of organic matter (OM) pool in soils. The research sites were larch forests, they are situated on Nizhne-Tungusskoe Plateau. Larch forests of feather-moss and lichen types (110 and 380 years old) were formed on 'ochric podbur' soils. Litter stocks are 3.5–4.5 kg m− 2 with thickness 10–25 cm. Cryomezomorphic northern taiga soils contains 38–73 t (carbon) ha− 1. Pool of fast mineralized OM has average value 38.1 t (carbon) ha− 1, including 20.5 and 6.4 t (Carbon) ha− 1 of labile compounds on surface and in the soil, and 11.2 t (carbon) ha− 1 of mobile OM. Microbial mass reaches 1.78–3.47 t (carbon) ha− 1, its proportion is 3.6–4.9% of the total OM carbon. Zoomass of feather-moss larch forest is 0.20–0.61 * 10− 2, in lichen larch forest −0.01–0.07 * 10− 2 t (carbon) ha− 1. A pool of resistant to biological decomposition and bonded to mineral soil matrix OM is 17.7 t (carbon) ha− 1 and it varies from 18.6 to 29.0 in feather-moss larch forest, and from 6.4 to 17.0 t (carbon) ha− 1 in lichen larch forest. Two-years field experiment has been performed to determine transformation rates of various plant litter fractions and to clarify the role of soil biota in these processes. The results showed participation of all biota groups in the decomposition of plant residues caused weight loss of larch-needles and root mortmass. Isolation of organic matter from all-size invertebrate groups leads to some decrease of decomposition activity.  相似文献   

13.
As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into nearly 50 EJ yr−1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 50–100 EJ yr−1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to be 20–100 EJ yr−1 by mid- to late- century, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.  相似文献   

14.
The application of bio-char (charcoal or biomass-derived black carbon (C)) to soil is proposed as a novel approach to establish a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. Apart from positive effects in both reducing emissions and increasing the sequestration of greenhouse gases, the production of bio-char and its application to soil will deliver immediate benefits through improved soil fertility and increased crop production. Conversion of biomass C to bio-char C leads to sequestration of about 50% of the initial C compared to the low amounts retained after burning (3%) and biological decomposition (< 10–20% after 5–10 years), therefore yielding more stable soil C than burning or direct land application of biomass. This efficiency of C conversion of biomass to bio-char is highly dependent on the type of feedstock, but is not significantly affected by the pyrolysis temperature (within 350–500 C common for pyrolysis). Existing slash-and-burn systems cause significant degradation of soil and release of greenhouse gases and opportunies may exist to enhance this system by conversion to slash-and-char systems. Our global analysis revealed that up to 12% of the total anthropogenic C emissions by land use change (0.21 Pg C) can be off-set annually in soil, if slash-and-burn is replaced by slash-and-char. Agricultural and forestry wastes such as forest residues, mill residues, field crop residues, or urban wastes add a conservatively estimated 0.16 Pg C yr−1. Biofuel production using modern biomass can produce a bio-char by-product through pyrolysis which results in 30.6 kg C sequestration for each GJ of energy produced. Using published projections of the use of renewable fuels in the year 2100, bio-char sequestration could amount to 5.5–9.5 Pg C yr−1 if this demand for energy was met through pyrolysis, which would exceed current emissions from fossil fuels (5.4 Pg C yr−1). Bio-char soil management systems can deliver tradable C emissions reduction, and C sequestered is easily accountable, and verifiable.  相似文献   

15.
Interest in bioenergy is growing across the Western world in response to mounting concerns about climate change. There is a risk of depletion of soil carbon stocks in biomass production systems, because a higher proportion of the organic matter and nutrients are removed from the site, compared with conventional agricultural and forestry systems. This paper reviews the factors that influence soil carbon dynamics in bioenergy systems, and utilises the model FullCAM to investigate the likely magnitude of soil carbon change where bioenergy systems replace conventional land uses. Environmental and management factors govern the magnitude and direction of change. Soil C losses are most likely where soil C is initially high, such as where improved pasture is converted to biomass production. Bioenergy systems are likely to enhance soil C where these replace conventional cropping, as intensively cropped soils are generally depleted in soil C. Measures that enhance soil C include maintenance of productivity through application of fertilisers, inclusion of legumes, and retention of nutrient-rich foliage on-site. Modelling results demonstrate that loss of soil carbon in bioenergy systems is associated with declines in the resistant plant matter and humified soil C pools. However, published experimental data and modelling results indicate that total soil C loss in bioenergy systems is generally small. Thus, although there may be some decline in soil carbon associated with biomass production, this is negligible in comparison with the contribution of bioenergy systems towards greenhouse mitigation through avoided fossil fuel emissions.  相似文献   

16.
Global Biomass Energy Potential   总被引:1,自引:1,他引:1  
The intensive use of renewable energy is one of the options to stabilize CO2atmospheric concentration at levels of 350 to 550ppm. A recent evaluation of the global potential of primary renewable energy carried out by Intergovernmental Panel on Climate Change (IPCC) sets a value of at least 2800EJ/yr, which is more than the most energy-intensive SRES scenario forecast for the world energy requirement up to the year 2100. Nevertheless, what is really important to quantify is the amount of final energy since the use of renewable sources may involve conversion efficiencies, from primary to final energy, different from the ones of conventional energy sources. In reality, IPCC does not provide a complete account of the final energy from renewables, but the text claims that using several available options to mitigate climate change, and renewables is only one of them, it is possible to stabilize atmospheric carbon dioxide (CO2) concentration at a low level. In this paper, we evaluate in detail biomass primary and final energy using sugarcane crop as a proxy, since it is one of the highest energy density forms of biomass, and through afforestation/reforestation using a model presented in IPCC Second Assessment Report (SAR). The conclusion is that the primary-energy potential for biomass has been under-evaluated by many authors and by IPCC, and this under-evaluation is even larger for final energy since sugarcane allows co-production of electricity and liquid fuel. Regarding forests we reproduce IPCC results for primary energy and calculate final energy. Sugarcane is a tropical crop and cannot be grown in all the land area forecasted for biomass energy plantation in the IPCC/TAR evaluation (i.e. 1280Mha). Nevertheless, there are large expanses of unexploited land, mainly in Latin America and Africa that are subject to warm weather and convenient rainfall. With the use of 143Mha of these lands it is possible to produce 164EJ/yr (1147GJ/hayr or 3.6W/m2on average) of primary energy and 90EJ/yr of final energy in the form of liquid fuel (alcohol) and electricity, using agricultural productivities near the best ones already achievable and biomass gasification technology. More remarkable is that these results can be obtained with the operation of 4,000 production units with unitary capacity similar to the largest currently in operation. These units should be spread over the tropical land area yielding a plantation density similar to the one presently observed in the state of São Paulo, Brazil, where alcohol and electricity have been commercialized in a cost-effective way for several years. Such an amount of final energy would be sufficiently large to fulfill all the expected global increase in oil demand, as well as in electricity consumption by 2030, assuming the energy demand of such sources continues to grow at the same pace observed over the last two decades. When sugarcane crops are combined with afforestation/reforestation it is possible to show that carbon emissions decline for some IPCC SRES scenarios by 2030, 2040 and 2050. Such energy alternatives significantly reduce CO2emissions by displacing fossil fuels and promote sustainable development through the creation of millions of direct and indirect jobs. Also, it opens an opportunity for negative CO2emissions when coupled with carbon dioxide capture and storage.  相似文献   

17.
In this study, paddy fields in Jilin province which are flooded parcel of arable lands used for growing rice (Oryza sativa Linn.) were selected as the object. Long-term exploitation of paddy fields led to variations of soil organic carbon (SOC) and green house gases (GHGs) emissions which might contribute to global warming. In order to calculate the amount of global warming potentials (GWPs) of emissions from ricepaddies and find the correlations among rice yield, SOC storage and GWP, DeNitrification-DeComposition (DNDC) model was used to simulate SOC densities and fluxes of main GHGs emitted from paddy fields. After verification, simulation results were used to calculate SOC storages and 100-year GWPs from 1949 to 2009. Results indicated that SOC densities in depths of 0–10 cm, 10–20 cm and 20–30 cm all kept increasing. Average methane (CH4) and nitrous oxide (N2O) fluxes were 278.55 kg carbon (kgC) ha−1 a−1 and 2.22 kg nitrogen (kgN) ha−1 a−1. The SOC storage (0–30 cm) had increased from 3.96 × 109kgC in 1949 to 47.85 × 109kgC in 2009. In addition, GWP emission was increasing exponentially in the past 61 years, from 0.16 × 106 Mg carbon dioxide equivalents (CO2-equivalents) to 66.36 × 106 Mg CO2-equivalents. Both SOC storage and GWP presented obviously linear relation to rice yields. Overall, the research suggested that long-term rice yields could be used to estimate the SOC storage and GWP variations.  相似文献   

18.
Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land-climate systems to assess how changes in electricity and land use, induced by climate change mitigation, impact on water demand under alternative socioeconomic (Shared Socioeconomic Pathways) and water policy assumptions (irrigation of bioenergy crops, cooling technologies for electricity generation). The impacts of climate change mitigation on cumulated global water demand across the century are highly uncertain, and depending on socioeconomic and water policy conditions, they range from a reduction of 15,000 km3 to an increase of more than 160,000 km3. The impact of irrigation of bioenergy crops is the most prominent factor, leading to significantly higher water requirements under climate change mitigation if bioenergy crops are irrigated. Differences in socioeconomic drivers and fossil fuel availability result in significant differences in electricity and bioenergy demands, in the associated electricity and primary energy mixes, and consequently in water demand. Economic affluence and abundance of fossil fuels aggravate pressures on water resources due to higher energy demand and greater deployment of water intensive technologies such as bioenergy and nuclear power. The evolution of future cooling systems is also identified as an important determinant of electricity water demand. Climate policy can result in a reduction of water demand if combined with policies on irrigation of bioenergy, and the deployment of non-water-intensive electricity sources and cooling types.  相似文献   

19.
We predicted changes in yields and direct net soil greenhouse gas (GHG) fluxes from converting conventional to alternative management practices across one of the world's most productive agricultural regions, the Central Valley of California, using the DAYCENT model. Alternative practices included conservation tillage, winter cover cropping, manure application, a 25% reduction in N fertilizer input and combinations of these. Alternative practices were evaluated for all unique combinations of crop rotation, climate, and soil types for the period 1997-2006. The crops included were alfalfa, corn, cotton, melon, safflower, sunflower, tomato, and wheat. Our predictions indicate that, adopting alternative management practices would decrease yields up to 5%. Changes in modeled SOC and net soil GHG fluxes corresponded to values reported in the literature. Average potential reductions of net soil GHG fluxes with alternative practices ranged from −0.7 to −3.3 Mg CO2-eq ha−1 yr−1 in the Sacramento Valley and −0.5 to −2.5 Mg CO2-eq ha−1 yr−1 for the San Joaquin Valley. While adopting a single alternative practice led to modest net soil GHG flux reductions (on average −1 Mg CO2-eq ha−1 yr−1), combining two or more of these practices led to greater decreases in net soil GHG fluxes of up to −3 Mg CO2-eq ha−1 yr−1. At the regional scale, the combination of winter cover cropping with manure application was particularly efficient in reducing GHG emissions. However, GHG mitigation potentials were mostly non-permanent because 60-80% of the decreases in net soil GHG fluxes were attributed to increases in SOC, except for the reduced fertilizer input practice, where reductions were mainly attributed to decreased N2O emissions. In conclusion, there are long-term GHG mitigation potentials within agriculture, but spatial and temporal aggregation will be necessary to reduce uncertainties around GHG emission reductions and the delivery risk of the associated C credits.  相似文献   

20.
We proposed the carbon sink project called “Carbon Sequestration by Forestation and Carbonization (CFC),” which involves biomass utilization and land conservation by incorporating the products of biomass carbonization into the agents for soil improvement, water purification, etc. Our purpose was to demonstrate the potential of the CFC scheme for carbon sequestration, particularly carbon storage in soil. Case studies were conducted in both developing and developed countries. 1. In southern Sumatra, Indonesia, 88,369 Mg-C year−1 of wood residue from a plantation forest and excess bark from a pulp mill would be converted into 15,571 Mg-C year−1 of the net carbon sink by biochar for soil improvement. The fixed carbon recovery of the system is 21.0%. 2. In a semiarid region in western Australia, the carbonization of wood residue was incorporated with multipurpose projects of a mallee eucalyptus plantation that involved the function of salinity prevention. During the project period of 35 years, the total carbon sink would reach 1,035,450 Mg-C with 14.0% by aboveground biomass, 33.1% by belowground biomass and 52.8% by biochar in soil. 3. In southern Kyushu, Japan, the study was focused on the effective use of surplus heat from a garbage incinerator for carbonizing woody materials. Sawdust of 936.0 Mg-C year−1 would be converted into the net carbon sink of 298.5 Mg-C year−1 by carbonization, with the fixed carbon recovery of the system being 31.9%. Consequently, the CFC project could encourage the creation of a carbon sink in soil. However, we recognize that the quality standard of biochar, the stability of biochar in soil, and the methods for monitoring biochar utilization must be clarified before incorporating biochar carbon into the carbon credit system. Throughout this article (except for diagrams and in citation details) carbonized biomass is, with the authors'agreement, called ‘biochar’ in lieu of the commonly used but misleading word ‘charcoal’ (Editor).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号