首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Venetian plain is a densely populated area and one of the most economically competitive regions in Europe. Therefore, a sustainable management of the water resources has to be accomplished to preserve both the social and economic value of this area and the regional environment in accordance with the European water policy directives. This paper presents the analysis of hydrologic and hydrogeological water balances of the high alluvial plain (approximately 790 km2) highlighting some important peculiarities that could be crucial for the local water policy. By focusing on the importance of different water budget components, the obtained results indicate in the irrigation the most relevant component of the aquifer recharge. Thus, the irrigation management policy of the Land Reclamation Consortia strongly influences aquifer recharge. Moreover, future scenarios (2071–2100) for the high Venetian plain are performed taking into account the changes of climate and irrigation policy. The inflow of the aquifer suffers a decrease ranging from 18% in the scenario influenced by climate change to 28% in the scenario affected by both the variations. In particular, the irrigation recharge shows the highest reduction due to both an increase in evaporation, owing to an increase in the surface temperature, or the irrigation methods. Therefore, the irrigation management policy adopted by the Land Reclamation Consortia is a fundamental concern. Changes from surface irrigation to spray or drip irrigation could strongly affect the aquifer recharge. The classical technique of surface irrigation is very useful in terms of aquifer recharge in comparison with drip or spray irrigation. However, it also requires a huge volume of water compared with the minimum desirable streamflow of a river and its management policy. Currently in Italy, the transition from conventional irrigation systems to water saving techniques is favored by the Land Reclamation Consortia in response to European and Italian directives. However, the possible reduction of the aquifer recharge could influence the actual social and economic condition of the Venetian plain because the human and industrial water needs are mostly dependent by groundwater exploitation. Therefore, water saving activities should be accompanied by appropriate corrective actions to reduce the environmental and social impact due to the decrease in aquifer recharge.  相似文献   

2.
The concerns over climate change negotiation, decision texts and links to domestic policy interests of countries to keep warming within an acceptable limit have become the ‘hotspot issues’ of the United Nations Framework Convention on Climate Change (UNFCCC). Hotspot issues are the human – political economy factors which have evolved over time from negotiation texts or phrases, principles or behaviors with tendencies to influence climate negotiations yet cannot be identified with the scientific literature. Whilst big emitters have been accused as having hegemony over the negotiations, the effects of disunity amongst the parties over domestic policy interests have been overlooked. Hence the article examines the emergence of hotspot issues and how they manifest within the international climate policy regime. The Intended Nationally Determined Contributions (INDCs) of 130 countries submitted before the Paris agreement, were analyzed using the following texts: Adaptation, Mitigation, Co-benefits, Finance, Land use, Food security, Poverty, Resilience, Green growth, Green economy, Sustainable development, Biodiversity, Ecosystem services and Conservation. Of these, ‘adaptation’ was cited 2780 times, 1956 for ‘mitigation’ and 32 for ‘ecosystem services’ in the nature conservation category. Ten phases of the climate policy regime and historical hotspot issues were identified for the period 1980–2030. ‘Adaptation’ and mitigation appeared more frequently in the INDCs and correlated with each other (r = 0.56), as the two correlated further with ‘land use’ (0.50 < r < 0.60), and similarly with sustainable development (0.40 < r < 0.70) where ‘r’ is the Pearson Rank Correlation. Therefore the success of the ‘ambitious targets’ for mitigation will depend on similar ambitious goals for adaptation, land use and sustainable development. Several differences existed in the correlation of the hotspot issues within the regional geographical blocs (Africa, Asia, Europe, North America, Oceania, South America) and split along the hotspot issues yet Europe mostly oriented towards mitigation and land use, and Oceania on resilience building. These differences provide favorable conditions for increased cooperation and true multilateralism if they are properly diagnosed.  相似文献   

3.
Developing countries situated mostly in latitudes that are projected for the highest climate change impact in the twenty-first century will also have a predictable increase in demand on energy sources. India presents us with a unique opportunity to study this phenomenon in a large developing country. This study finds that climate adaptation policies of India should consider the significance of air conditioners (A/Cs) in mitigation of human vulnerability due to unpredictable weather events such as heat waves. However, the energy demand due to air conditioning usage alone will be in the range of an extra ~750,000 GWh to ~1,350,000 GWh with a 3.7 °C increase in surface temperatures under different population scenarios and increasing incomes by the year 2100. We project that residential A/C usage by 2100 will result in CO2 emissions of 592 Tg to 1064 Tg. This is significant given that India's total contribution to global CO2 emissions in 2009 was measured at 1670 Tg and country's residential and commercial electricity consumption in 2007 was estimated at 145,000 GWh.  相似文献   

4.
Factors influencing support for climate mitigation policy in the United States are well researched, however, research regarding individuals’ support for climate adaptation policy is relatively sparse. This study explores how an individual’s perception of climate change impacts may influence their support for adaptation actions. Results of a survey of the U.S. public (n = 653) indicates that individuals who believe climate change impacts are unlikely to happen or will primarily affect other people in other places are less likely to be concerned about climate change impacts and less likely to support climate adaptation. However, an individual’s support for climate change adaptation measures is not influenced by their perception of when climate change impacts will occur even when taking into account concern for climate impacts. Critical for policy-makers, a belief that climate adaptation measures will not be effective attenuates the relationship between psychological distance, concern for climate change impacts, and adaptation policy measures. Our results indicate that to effectively communicate about climate change, policy-makers should emphasize that: (i) climate change impacts are occurring, (ii) that their constituents are being affected now, or will be in the future, and (iii) communicate that adaptation measures can be effective in addressing risks associated with climate change impacts.  相似文献   

5.
Water scarcity in China would possibly be aggravated by rapid increase in water demand for irrigation due to climate change. This paper focuses on the mechanism of climate change impact on regional irrigation water demand by considering the dynamic feedback relationships among climate change, irrigation water demand and adaptation measures. The model in implemented using system dynamics approach and employed in Baojixia irrigation district located in Shaanxi Province of China to analyses the changes in irrigation water demand under different climate change scenarios. Obtained results revealed that temperature will be the dominant factor to determine irrigation water demand in the area. An increase of temperature by 1 °C will result in net irrigation water demand to increase by about 12,050?×?104 m3 and gross water demand by about 20,080?×?104 m3 in the area. However, irrigation water demand will not increase at the same rate of temperature rise as the adaptation measures will eventually reduce the water demand increased by temperature rise. It is expected that the modeling approach presented in this study can be used in adopting policy responses to reduce climate change impacts on water resources.  相似文献   

6.
气候变化问题日益凸显。应对和适应气候变化刻不容缓。然而,短期内无法有效减缓气候变化产生的不利影响。因此,有必要针对不同领域制定相应的适应措施来提高人们对气候变化的适应能力。北京作为人口众多的大城市及我国的缺水城市之一,气候变化无疑将加剧水资源的供需矛盾。本文针对北京市水资源现状及气候变化对北京市水资源领域已经形成的影响,从自然、工程、政策制度三个角度探讨了北京市水资源领域适应气候变化可采取的对策及保障措施。  相似文献   

7.
The water cycle, a fundamental component of climate, is likely to be altered in important ways by climate change. Climate change will most likely worsen the already existing water related problems. Then the question is how should policy makers respond to this dilemma. Climate change mitigation, through greenhouse gas (GHG) emissions reduction and sequestration is not a sufficient response. Adaptation will also need to feature as a response strategy. Mitigation and adaptation need to be viewed as complementary responses to climate change. Complementarity between adaptation and mitigation in the water sector will be addressed in this paper. The paper will also outline the main impacts of climate change on water resources and identify those areas that are most dependent and vulnerable to hydrological systems (e.g., hydroelectric systems, irrigation, agriculture) and any changes thereof resulting from climate change. It will aim to assess the impact of water demand and water use, with a view to identifying the main relationships between mitigation and adaptation in the water sector and the means through which individual mitigation and adaptation actions can potentially interact with each other for the benefit of the water sector as a whole. It will also explore the implications of climate change on the management of water resources. Adaptation and mitigation options would be considered in the context of their socio-economic and environmental impacts and their contribution to sustainable development. A brief evaluation of how this information can be directly used for planning purpose will also be presented.
Luis J. MataEmail:
  相似文献   

8.
Climate change alone may deeply impact air quality levels in the atmosphere because the changes in the meteorological conditions will induce changes on the transport, dispersion and transformation of air pollutants. The aim of this work was to evaluate the impact of climate change on the air quality over Europe and Portugal, using a reference year (year 1990) and a IPCC SRES A2 year (year 2100). The Hadley Centre global atmospheric circulation model (HadAM3P) was used to provide results for these two climatic scenarios, which were then used as synoptic forcing for the MM5-CHIMERE air quality modelling system. In order to assess the contribution of future climate change on O3 and PM concentrations, no changes in regional emissions were assumed and only climate change forcing was considered. The modelling results suggest that the O3 monthly mean levels in the atmosphere may increase almost 50 μg m?3 across Europe in July under the IPCC SRES A2 scenario. In Portugal, this increase may reach 20 μg m?3. The changes of PM10 monthly average values over Europe will depend on the region. The increase in PM10 concentrations during specific months could be explained by the average reduction of the boundary layer height and wind speed.  相似文献   

9.
In many peri-urban areas of Southeast Asia, land use has been transformed from rice-based to more profitable vegetable-based systems in order to meet the increasing market demand. The major management related flows of nitrogen (N), phosphorus (P), potassium (K), copper (Cu) and zinc (Zn) were quantified over a 1-year period for intensive small-scale aquatic and terrestrial vegetable systems situated in two peri-urban areas of Hanoi City, Vietnam. The two areas have different sources of irrigation water; wastewater from Hanoi City and water from the Red River upstream of Hanoi. The first nutrient balances for this region and farming systems are presented. The main sources of individual elements were quantified and the nutrient use efficiency estimated. The environmental risks for losses and/or soil accumulation were also assessed and discussed in relation to long-term sustainability and health aspects.The primary source of nutrient input involved a combination of chemical fertilisers, manure (chicken) and irrigation water. A variable composition and availability of the latter two sources greatly influenced the relative magnitude of the final total loads for individual elements. Despite relatively good nutrient use efficiencies being demonstrated for N (46–86%) and K (66–94%), and to some extent also for P (19–46%), high inputs still resulted in substantial annual surpluses causing risks for losses to surface and ground waters. The surplus for N ranged from 85 to 882 kg ha−1 year−1, compared to P and K which were 109–196 and 20–306 kg ha−1 year−1, respectively. Those for Cu and Zn varied from 0.2 to 2.7 and from 0.6 to 7.7 kg ha−1 year−1, respectively, indicating high risk for soil accumulation and associated transfers through the food chain.Wastewater irrigation contributed to high inputs, and excess use of organic and chemical fertilisers represent a major threat to the soil and water environment. Management options that improve nutrient use efficiency represent an important objective that will help reduce annual surpluses. A sustainable reuse of wastewater for irrigation in peri-urban farming systems can contribute significantly to the nutrient supply (assuming low concentrations of potential toxic or hazardous substances in the water). Nutrient inputs need to be better related to the crop need, e.g. through better knowledge about the nutrient concentrations in the wastewater and improved management of the amount of irrigation water being applied.  相似文献   

10.
The aim of this study is to estimate flood risk in the Mediterranean island of Crete in Greece, using Geographic Information Systems (GIS). The island of Crete, covering an area of 8265 km2, is one of the most intensively Mediterranean agricultural areas dominated by fruit tree crops. In this study, the factors that are directly related to the creation of a flood are combined in a GIS environment in order to identify the most prone flooding areas. These factors are: (a) the Flow accumulation (F), (b) the Rainfall intensity (R), (c) the Elevation (E), (d) the Geology (G), (e) the Land use (L), and (f) the Slope (S). The initials of these factors gave the name to the proposed method: “FREGLS”. The above factors are presented in the form of grid maps and are used in order to determine the final flood risk map. Subsequently, the flood prone fruit tree areas of Crete can be estimated by applying a methodology based on weighting coefficients. The reliability of the final flood risk map is verified using historical flooded data. Additionally, the impact of global climate change scenarios A2 and B1, on flood risk in Crete is examined. Based on the above, this study highlights the flood prone fruit tree areas in the island of Crete under current and future climate conditions. Also, flood-tolerant fruit trees which appear to be economically important for Greece are recommended, especially for the high flood risk areas of the island. The proposed methodology can be applied as a decision making tool for flood risk mitigation to any river basin where tree crops are cultivated.  相似文献   

11.
This paper presents the results of an environmental impact assessment of biodiesel production from soybean in Brazil. In order to achieve this objective, environmental impact indicators provided by Emergy Accounting (EA), Embodied Energy Analysis (EEA) and Material Flow Accounting (MFA) were used. The results showed that for one liter of biodiesel 8.8 kg of topsoil are lost in erosion, besides the cost of 0.2 kg of fertilizers, about 5.2 m2 of crop area, 7.33 kg of abiotic materials, 9.0 tons of water and 0.66 kg of air and about 0.86 kg of CO2 were released. About 0.27 kg of crude oil equivalent is required as inputs to produce one liter of biodiesel, which means an energy return of 2.48 J of biodiesel per Joule of fossil fuel invested. The transformity of biodiesel (3.90E + 05 seJ J?1) is higher than those calculated for fossil fuels as other biofuels, indicating a higher demand for direct and indirect environmental support. Similarly, the biodiesel emergy yield ratio (1.62) indicates that a very low net emergy is delivered to consumers, compared to alternatives. Obtained results show that when crop production and industrial conversion to fuel are supported by fossil fuels in the form of chemicals, goods, and process energy, the fraction of fuel that can actually be considered renewable is very low (around 31%).  相似文献   

12.
Biochar addition to agricultural soil has been suggested to mitigate climate change through increased biogenic carbon storage and reduction of greenhouse gas emissions. We measured the fluxes of N2O, CO2, and CH4 after adding 9 t ha?1 biochar on an agricultural soil in Southern Finland in May 2009. We conducted these measurements twice a week for 1.5 months, between sowing and canopy closure, to capture the period of highest N2O emissions, where the potential for mitigation would also be highest. Biochar addition increased CH4 uptake (96% increase in the average cumulative CH4 uptake), but no statistically significant differences were observed in the CO2 and N2O emissions between the biochar amended and control plots. Added biochar increased soil water holding capacity by 11%. Further studies are needed to clarify whether this may help balance fluctuations in water availability to plants in the future climate with more frequent drought periods.  相似文献   

13.
Abandonment of marginal agricultural areas with subsequent secondary succession is a widespread type of land use change in Mediterranean and mountain areas of Europe, leading to important environmental consequences such as change in the water balance, carbon cycling, and regional climate. Paired eddy flux measurement design with grassland site and tree/shrub encroached site has been set-up in the Slovenian Karst (submediterranean climate region) to investigate the effects of secondary succession on ecosystem carbon cycling. The invasion of woody plant species was found to significantly change carbon balance shifting annual NEE from source to an evident sink. According to one year of data succession site stored ?126 ± 14 g C m?2 y?1 while grassland site emitted 353 ± 72 g C m?2 y?1. In addition, the seasonal course of CO2 exchange differed between both succession stages, which can be related to differences in phenology, i.e. activity of prevailing plant species, and modified environmental conditions within forest fragments of the invaded site. Negligible effect of instrument heating was observed which proves the Burba correction in our ecosystems unnecessary. Unexpectedly high CO2 emissions and large disagreement with soil respiration especially on the grassland site in late autumn indicate additional sources of carbon which cannot be biologically processes, such as degassing of soil pores and caves after rain events.  相似文献   

14.
Evaluation of adaptive management options is very crucial for successfully dealing with negative climate change impacts. Research objectives of this study were (1) to determine the proper N application rate for current practice, (2) to select a range of synthetic wheat (Triticum aestivum L.) cultivars to expand the existing wheat cultivar pool for adaptation purpose, (3) to quantify the potential impacts of climate change on wheat grain yield and (4) to evaluate the effectiveness of three common management options such as early sowing, changing N application rate and use of different wheat cultivars derived in (2) and given in the APSIM-Wheat model package in dealing with the projected negative impacts for Keith, South Australia. The APSIM-Wheat model was used to achieve these objectives. It was found that 75 kg ha?1 N application at sowing for current situation is appropriate for the study location. This provided a non-limiting N supply condition for climate change impact and adaptation evaluation. Negative impacts of climate change on wheat grain yield were projected under both high (?15%) and low (?10%) plant available water capacity conditions. Neither changes in N application level nor in wheat cultivar alone nor their synergistic effects could offset the negative climate change impact. It was found that early sowing is an effective adaptation strategy when initial soil water was reset at 25 mm at sowing but this may be hard to realise especially since a drier environment is projected.  相似文献   

15.
Cities are developing innovative strategies to combat climate change but there remains little knowledge of the winners and losers from climate-adaptive land use planning and design. We examine the distribution of health benefits associated with land use policies designed to increase vegetation and surface reflectivity in three US metropolitan areas: Atlanta, GA, Philadelphia, PA, and Phoenix, AZ. Projections of population and land cover at the census tract scale were combined with climate models for the year 2050 at 4 km × 4 km resolution to produce future summer temperatures which were input into a comparative risk assessment framework for the temperature-mortality relationship. The findings suggest disparities in the effectiveness of urban heat management strategies by age, income, and race. We conclude that, to be most protective of human health, urban heat management must prioritize areas of greatest population vulnerability.  相似文献   

16.
Climate change, population growth and socio-structural changes will make meeting future food demands extremely challenging. As wheat is a globally traded food commodity central to the food security of many nations, this paper uses it as an example to explore the impact of climate change on global food supply and quantify the resulting greenhouse gas emissions. Published data on projected wheat production is used to analyse how global production can be increased to match projected demand. The results show that the largest projected wheat demand increases are in areas most likely to suffer severe climate change impacts, but that global demand could be met if northern hemisphere producers exploit climate change benefits to increase production and narrow their yield gaps. Life cycle assessment of different climate change scenarios shows that in the case of one of the most important wheat producers (the UK) it may be possible to improve yields with an increase of only 0.6% in the emission intensity per unit of wheat produced in a 2 °C scenario. However, UK production would need to rise substantially, increasing total UK wheat production emissions by 26%. This demonstrates how national emission inventories and associated targets do not incentivise minimisation of global greenhouse gas emissions while meeting increased food demands, highlighting a triad of challenges: meeting the rising demand for food, adapting to climate change and reducing emissions.  相似文献   

17.
For addressing climate change, public support for changes in policy is needed, as well changes in individual lifestyles. Both of these appear to be intimately related with people’s worldviews. Understanding these worldviews is therefore essential. In order to research and ‘map’ them, we translated the theoretical ‘Integrative Worldview Framework’ (IWF) into an empirical, quantitative approach. We constructed a worldview-scale aiming to distinguish between four major worldviews – labeled traditional, modern, postmodern, and integrative – and explored their interface with opinions and behaviors with respect to climate change. The survey was conducted with representative samples of citizens in the Netherlands and the USA (n = 527 and n = 556). The hypothesized worldviews were found in the data with a reasonable degree of reliability, especially in the Dutch sample. We also found consistent relationships between these worldview-clusters and a range of opinions, political priorities, and behaviors. In both countries postmoderns and integratives displayed significantly more concern about climate change as well as more sustainable behaviors, compared with moderns and traditionals. The implications of these findings for environmental policy and social science are noteworthy.  相似文献   

18.
Excessive loss of fine-grained sediment to rivers is widely recognised as a global environmental problem. To address this issue, policy teams and catchment managers require an estimate of the ‘gap’ requiring remediation, as represented by the excess above ‘background’ losses. Accordingly, recent work has estimated the exceedance of modern ‘background’ sediment delivery to rivers at national scale across England and Wales due to (i) current agricultural land cover, cropping and stocking, and (ii) current land use corrected for the uptake of on-farm mitigation measures. This sectoral focus recognises that, nationally, agriculture has been identified as the principal source of fine sediment loss to the aquatic environment. Two estimates of modern ‘background’ sediment loss, based on paleolimnological evidence, were used in the analysis; the target modern ‘background’ (TMBSDR) and maximum modern ‘background’ (MMBSDR) sediment delivery to rivers. For individual (n = 4485) non-coastal water bodies, the sediment ‘gap’ in excess of TMBSDR and MMBSDR, due to current land cover, cropping and stocking, was estimated to range up to 1368 kg ha−1 yr−1 (median 61 kg ha−1 yr−1) and 1321 kg ha−1 yr−1 (median 19 kg ha−1 yr−1), respectively. The respective ranges in conjunction with current land cover, cropping and stocking but corrected for the potential impact of on-farm sediment mitigation measures were up to 1315 kg ha−1 yr−1 (median 50 kg ha−1 yr−1) and 1269 kg ha−1 yr−1 (median 8 kg ha−1 yr−1). Multiplication of the estimates of excess sediment loss corrected for current measure uptake, above TMBSDR and MMBSDR, with estimated maximum unit damage costs for the detrimental impacts of sediment pollution on ecosystem goods and services, suggested respective water body ranges up to 495 £ ha−1 yr−1 and 478 £ ha−1 yr−1. Nationally, the total loss of sediment in excess of TMBSDR was estimated at 1,389,818 t yr−1 equating to maximum environmental damage costs of £523 M yr−1, due to current structural land use, compared to 1,225,440 t yr−1 equating to maximum damage costs of £462 M yr−1 due the uptake of on-farm sediment control measures. The corresponding total loss of sediment in excess of MMBSDR was estimated at 1,038,764 t yr−1 equating to maximum damage costs of £462 M yr−1, compared with 890,146 t yr−1 and £335 M yr−1 correcting excess agricultural sediment loss for current implementation of abatement measures supported by policy instruments. This work suggests that the current uptake of sediment control measures on farms across England and Wales is delivering limited benefits in terms of reducing loadings to rivers and associated environmental damage costs.  相似文献   

19.
To investigate the effect of air-exposed biocathode(AEB) on the performance of singlechamber microbial fuel cell(SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95%AEB, removal rates of ammonia, total nitrogen(TN) and chemical oxygen demand(COD)reached 99.34% ± 0.11%, 99.34% ± 0.10% and 90.79% ± 0.12%, respectively. The nitrogen removal loading rates were 36.38 g N/m~3/day. Meanwhile, current density and power density obtained at 0.7 A/m3 and 104 m W/m~3 respectively. Further experiments on opencircuit(Test 2) and carbon source(Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation.  相似文献   

20.
The European Union Water Framework Directive (WFD) aims to achieve the “good status” of waters by 2015, through monitoring and control of human impacts on “bodies of surface water” (BSWs), discrete elements for quality diagnosis and management. Headwater streams, however, are frequently neglected as they are not usually recognised as BSW. This poses limitations for the management of river catchments, because anthropogenic impacts on headwaters can constrain the quality of downstream rivers. To illustrate this problem, we compared nitrate levels and land use pressures in a small agricultural catchment with those recorded in the catchment in which it is embedded (Ega), and in the Ebro River Basin (NE Spain) comprising both. Agriculture greatly influenced water nitrate concentration, regardless of the size of the catchments: R2 = 0.91 for headwater catchments (0.1–7.3 km2), and R2 = 0.82 for Ebro tributary catchments (223–3113 km2). Moreover, nitrate concentration in the outlet of a non-BSW small river catchment was similar to that of the greater downstream BSW rivers. These results are of interest since, despite representing 76% of the length of the Ega catchment hydrographical network, only 3.1% of the length of the headwater streams has been identified as BSWs. Human activities affecting headwater streams should therefore be considered if the 2015 objective of the WFD is to be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号