首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究污水处理厂中有机磷阻燃剂(OPFRs)的污染特征,于2023年采集湖南省长沙市一座典型污水处理厂(洋湖再生水厂)各污水处理工艺段的样本。采用气相色谱-质谱联用仪(GC-MS)分析污水中磷酸三(1-氯-2-丙基)酯(TCPP)的污染水平,对污水处理厂的各项工艺对OPFRs的处理效果进行了计算,并估算了最终排入环境的日均排放量,评估其潜在生态风险。结果表明,TCPP在进水、出水中均有检出,进水和总出水中的浓度分别为142.9ng·L-1、96.7 ng·L-1,总去除率为32%,格栅、沉淀池、生物池、MSBR、人工湿地和消毒池对其去除率分别为8%、-43%、5%、11%、40%,表明格栅、MSBR、人工湿地对TCPP的去除具有促进作用,尤其是人工湿地。计算得到TCPP的日排放通量为3.868g·d-1,不同人群通过饮用水摄入TCPP的日均暴露量为3~3.41 ng·(kg·d)-1,其污染所致人体健康风险水平较低。  相似文献   

2.
张庆  张颖  牛志广 《环境科学学报》2022,42(12):114-121
邻苯二甲酸酯(PAEs)作为全球大规模使用的增塑剂,已成为环境中“无处不在”的一类新兴污染物.PAEs在世界各国饮用水中被广泛检出,但在饮用水输配系统中的污染特征及潜在污染来源研究尚不充分.本研究以饮用水系统为对象,分析了原水、出厂水及龙头水中PAEs的污染特征及变化规律,讨论了季节因素对各阶段出水中PAEs污染特征的影响,并评估了龙头水中PAEs对各类暴露人群所构成的健康风险.结果表明:原水中总PAEs浓度呈夏季>冬季>春季>秋季的规律,DBP、DEHP及DiBP是原水中主要存在的PAEs;水处理过程能去除47.9%~76.7%的总PAEs,对高分子量的DEHP去除率更高;龙头水中PAEs的浓度要显著高于出厂水,其中夏季最为明显,室内塑料管材是潜在的污染来源;龙头水中PAEs对人体健康造成的非致癌风险和致癌风险均低于最大可接受风险水平,对成年男性构成的致癌风险最高为7.37×10-7,已接近最大可接受风险水平(10-6),应加以重视.  相似文献   

3.
采集宁夏全区6种不同土地利用类型共87个土壤样品,使用气相色谱-质谱联用检测方法(GC-MS)检测了土壤中16种邻苯二甲酸酯(PAEs)化合物的含量,分析了不同土地利用类型土壤中PAEs污染特征和组成特征.基于主成分分析法对不同土地利用类型土壤中PAEs的可能来源进行了探讨,采用普通克里金插值法对PAEs进行空间插值分析,利用健康风险模型评价了6种PAEs单体在覆膜耕地、园地、耕地土壤中的人群健康风险.结果表明:宁夏不同土地利用类型土壤中∑16PAEs含量范围为84.3~8728μg/kg,平均值为1500μg/kg,空间上表现出南北高,中间低的分布特征;在不同土地利用类型土壤中,DEHP、DnBP、DIBP是研究区土壤中最主要的污染单体,对∑16PAEs总含量的平均贡献率分别为58.3%、13.9%、11.8%;主成分分析表明DnBP、DEHP、DIBP、DEP、DpHP、DMP单体之间、DBEP、BMPP单体之间具有正相关性,表明这些单体之间具有可能相似的来源;人体健康风险评价表明,6种优先控制化合物对成人和儿童产生的非致癌风险值均<1,未超过美国环保署(EPA)推荐的非致癌风险水平,对于DEHP和BBP单体,成人和儿童通过非饮食途径的致癌风险未超过美国EPA推荐的致癌风险水平,而在饮食途径下成人和儿童的致癌风险值分别为7.91×10-6和3.08×10-6,超过EPA推荐的致癌风险水平,应引起重视.  相似文献   

4.
为了研究污水处理厂中有机磷阻燃剂(organophosphorus flame retardants,OPFRs)的污染特征,于2017年采集苏州市8个污水处理厂(7个A2/O工艺与1个氧化沟工艺)的进水、二沉池出水、污水厂出水、生物池污泥以及脱水剩余污泥.采用加速溶剂萃取(ASE)-固相萃取方法测定了污水与污泥中10种OPFRs的浓度,并比较了两种不同工艺各个工艺段OPFRs的去除效果,估算了最终排入环境的日均排放量.结果表明:7种OPFRs在进水、出水、污泥中均有检出,进水和总出水中OPFRs总浓度范围分别为0.74~222.65μg·L~(-1)和0.46~175.41μg·L~(-1),均值分别为65.56μg·L~(-1)和22.99μg·L~(-1);二沉池出水中OPFRs总浓度为0.48~178.14μg·L~(-1),均值为43.14μg·L~(-1);估算污水厂出水中OPFRs日排放量为36.69~2 177.12 g·d~(-1).剩余污泥中OPFRs总含量(以干重计)范围为89.32~596.24μg·g~(-1),均值(以干重计)为249.35μg·g~(-1),剩余污泥中OPFRs的日排放量最小为3.57~7.15 kg·d~(-1),最大为47.70~95.40 kg·d~(-1).氧化沟工艺对OPFRs有较好去除,去除率达到92%;A_2/O工艺则为11%~99%,差异性较大.3种氯代类的OPFRs[分别为磷酸三(2-氯乙基)酯、磷酸三(1-氯-2-丙基)酯、磷酸三(1,3-二氯-2-丙基)酯]是进水与出水中主要成分,主要由于氯代OPFRs的使用量大和传统污水处理技术对其去除率低.  相似文献   

5.
有机磷酸酯(organophosphate esters, OPEs)在环境中普遍存在,对生态系统和人体健康构成潜在的风险.在优化固相萃取(SPE)前处理方法的基上,建立了超高效液相色谱-质谱联用(UPLC-MS/MS)测定水体中8种OPEs的检测方法.实验对比了不同SPE小柱、不同洗脱液和不同洗脱液体积对8种目标化合物的回收率.结果发现,使用ENVI-18柱富集OPEs,用8 mL含25%(体积分数)二氯甲烷的乙腈洗脱,目标化合物加标回收率在92.5%~102.2%.不同基质样品加标回收率为88.5%~116.1%,RSD为1.7%~9.9%.对北京某污水处理厂不同工艺和污水受纳河流水体上下游连续6 d取样检测,污水厂出水中OPEs的浓度范围为85.9~235.4 ng·L~(-1),受纳河流下游的6 d OPEs平均浓度为130.3 ng·L~(-1),高于上游来水中浓度(119.4 ng·L~(-1)),但低于污水处理厂出水平均总浓度(162.5 ng·L~(-1)).结果表明,污水处理厂不能完全去除OPEs,对磷酸三乙酯(TEP)和磷酸三(2-乙基己基)酯(TEHP)存在负去除现象,对其它OPEs的去除率在14.1%~84.9%之间,污水处理厂对总∑OPEs去除率为50.0%.污水处理厂出水中磷酸三苯酯(TPhP)存在中等风险(RQ0.10),其他有机磷酸酯的环境风险较低(RQ0.10),但其长期混合作用对受纳河流生态系统产生的生态危害不容忽视.  相似文献   

6.
抗生素和内分泌干扰物(Endocrine Disrupting Compounds,EDCs)是污水中常见的新污染物,而污水处理厂出水中残留的新污染物因对生态系统和人体健康存在潜在威胁而备受关注.目前关于污水处理厂中新污染物的迁移转化及归趋研究存在差异,为调查不同污水处理工艺同时对抗生素和EDCs的去除效果,本研究选取了贵阳市4座典型污水处理厂,研究了10种抗生素和10种EDCs的赋存情况、去除效果及迁移规律,并评估了对受纳水体造成的生态风险.结果表明:在进出水及污泥中抗生素和EDCs均有不同程度检出,其中,氧氟沙星(OFX)和邻苯二甲酸二(2-乙基己)酯(DEHP)为主要贡献者,进出水中抗生素总浓度分别为569.78~781.63和14.43~458.78 ng·L-1,进出水中EDCs总浓度分别为3297.98~4454.72和669.27~1884.00 ng·L-1,抗生素和EDCs在处理工艺流程中的去除率分别为-85.65%~95.22%和3.51%~65.44%.不同污水处理单元对新污染物的去除效果差异较大,除个别处理工艺对磺胺类...  相似文献   

7.
为了解我国市售卫生巾中邻苯二甲酸酯污染特征,采集了16种常见品牌的卫生巾样品,采用气质联用仪(GC-MS)对其中16种PAEs进行测定分析,并应用美国环境保护署(USEPA)推荐的方法评估了其健康风险.结果表明,我国市售卫生巾样品中∑_(16)PAEs含量为2.705~13.779μg/g,平均为5.477μg/g,较婴儿纸尿裤等产品污染水平略高;DIBP、DBP和DEHP是含量最高的三种单体,三者占PAEs总含量的73.5%,可能与卫生巾原料和加工过程的人为添加有关;卫生巾中DMP、DEP、DIBP、DBP、BBP、DEHP和∑_6PAEs非致癌风险值远小于1,对人体无明显非致癌风险,但DEHP可能对人体存在一定的致癌风险,应引起重视.  相似文献   

8.
兰州市污水处理厂中典型抗生素的污染特征研究   总被引:11,自引:1,他引:10  
以9种磺胺类、4种氟喹诺酮类以及1种氯霉素为目标物,调查研究了它们在兰州市两个生活污水处理厂中的含量水平和去除特性,初步评估了其在受纳水体中的环境风险.结果表明:污水处理厂进水和出水中均有抗生素检出,浓度差别较大,进水中抗生素浓度在nd~55.25μg·L~(-1)之间,出水中浓度在nd~9.78μg·L~(-1)之间,脱水污泥中抗生素的平均浓度高于活性污泥;抗生素在整个污水处理工艺中的去除率为15.39%~100%,生物转化或降解作用是二级处理过程中的主要去除机制;污水处理厂排水增加了受纳水体中抗生素的浓度,是受纳水体中抗生素的来源之一,环境中低浓度、多种抗生素长期残留,存在较大的潜在风险.  相似文献   

9.
本研究通过对典型污水处理厂各构筑物进行采样分析,研究多溴联苯醚在污水处理厂中的分布、迁移和转化.结果表明,在污水处理厂所有污泥样品中都有PBDEs检出,PBDEs浓度范围在4226.76~9204.14 ng·g-1之间.其中,BDE-209是主导同系物,所占平均比例为83.16%(范围为75.75%~89.48%).该污水处理厂的进水样品中溶解态PBDEs总浓度为183.11 ng·L-1,而出水样品中溶解态PBDEs浓度则降至7.07 ng·L-1,PBDEs的去除率达到96%以上.所有污水样品中BDE-209都是最主要的同系物,所占比例在75.75%~85.68%之间,BDE-99和BDE-47是仅次于BDE-209的另外2种主要同系物.通过对污水处理流程中PBDEs的溶解态和颗粒态分配系数的研究得出,溶解性颗粒物对疏水性有机物在整个污水处理流程中的迁移、转化有重要的影响.该污水厂的日均PBDEs负荷量为21311.2 mg·d-1,污水经初沉池和二沉池处理之后分别有58.07%和39.91%的PBDEs被去除,即一共有97.98%的PBDEs被去除了,最后在出水中只剩2.02%的PBDEs.该污水厂通过出水的日均排放PBDEs的量为430.8 mg,通过脱水污泥日均排放PBDEs的量高达20880.4 mg.土壤在污泥农用之后PBDEs浓度年增加量为25.4μg·kg-1,污泥农用需要百年以上才能达到欧盟的规定限值.  相似文献   

10.
采用固相萃取、高效液相色谱/串联质谱法 (污泥样品先采用超声波萃取预处理方法提取) 检测分析了包括磺胺类、喹诺酮类、大环类酯类抗生素、心血管类、止痛剂类等8类医药活性物质在重庆某污水厂中的含量水平及其行为归趋.采用 EC/PNEC 综合评价体系评估环境中目标医药活性物质的生态风险,利用质量平衡分析的方法分析了其在水相及污泥相中的分布.结果表明,目标物质在水相中均可检出,其检出浓度在ng/L~μg/L,在污泥样品中可检测出18种目标物质,其浓度在ng/g (干重,下同).仅仅1.1%的目标物质被污泥吸附去除.污水处理厂初级处理及氯化消毒阶段对目标物质无明显去除效果,目标物质的去除主要发生在生物处理阶段,生物的降解或转化作用是目标物质的主要去除机制.EC/PNEC分析表明,磺胺嘧啶、磺胺甲恶唑、氧氟沙星与脱水红霉素在污水处理厂出水及其污泥中综合评价因子均大于1,它们的存在可能对环境产生不同程度的危害.本研究结果表明,污水处理厂并不能完全去除水相中微量的医药物质,为防止排放导致的潜在生态风险,出水及污泥中活性医药物质需采取措施进行进一步的处理.  相似文献   

11.
采用固相萃取、高效液相色谱/串联质谱法(污泥样品先采用超声波萃取预处理方法提取)检测分析了包括磺胺类、喹诺酮类、大环类酯类抗生素、心血管类、止痛剂类等8类医药活性物质在重庆某污水厂中的含量水平及其行为归趋.采用EC/PNEC综合评价体系评估环境中目标医药活性物质的生态风险,利用质量平衡分析的方法分析了其在水相及污泥相中的分布.结果表明,目标物质在水相中均可检出,其检出浓度在ng/L~μg/L,在污泥样品中可检测出18种目标物质,其浓度在ng/g(干重,下同).仅仅1.1%的目标物质被污泥吸附去除.污水处理厂初级处理及氯化消毒阶段对目标物质无明显去除效果,目标物质的去除主要发生在生物处理阶段,生物的降解或转化作用是目标物质的主要去除机制.EC/PNEC分析表明,磺胺嘧啶、磺胺甲恶唑、氧氟沙星与脱水红霉素在污水处理厂出水及其污泥中综合评价因子均大于1,它们的存在可能对环境产生不同程度的危害.本研究结果表明,污水处理厂并不能完全去除水相中微量的医药物质,为防止排放导致的潜在生态风险,出水及污泥中活性医药物质需采取措施进行进一步的处理.  相似文献   

12.
近年来,环境中的药品和个人护理产品(pharmaceuticals and personal care products, PPCPs)因对生态系统和人类健康可能造成持续威胁而日益受到人们的关注.以南京市某生活污水处理厂及其受纳水体为研究对象,探究了19种典型PPCPs在城市污水处理系统及其受纳水体中的赋存情况与浓度变化,并利用风险商(RQs)对目标PPCPs的生态风险以及利用急性毒性和拟雌激素效应浓度对整体生态风险情况进行了评估.结果表明双氯芬酸(351.42 ng·L-1)和卡马西平(258.3 ng·L-1)是CN污水处理厂出水中PPCPs污染的主要贡献者,雌三醇、双氯芬酸与克拉霉素是污水厂进水中的3种高风险物质,克拉霉素与罗红霉素是出水中的主要的风险物质.城市污水处理系统对大部分PPCPs有较好的去除效果,经过二级生化处理后,除三氯生外的目标PPCPs生态风险均有不同程度的降低,布洛芬由低风险降至无风险,卡马西平由中风险降至低风险或无风险,克拉霉素在冬季由高风险降至无风险,双氯芬酸在夏季由高风险降至中风险,其他PPCPs风险等级虽未下...  相似文献   

13.
为研究酞酸酯(PAEs)的环境行为及其生态风险,特选择有近30年废塑料处理历史的莱州市沙河镇珍珠河流域为研究对象,采集了26个0~10 cm表层沉积物样品与8个10~30 cm底层沉积物样品,采用GC-MS测试了被USEPA列为优先控制污染物的6种PAEs含量,分析其污染水平、空间分布、表层与底层沉积物中PAEs含量差异并进行生态风险评价.结果表明,表层沉积物中酞酸酯总含量(∑_6PAEs)范围为nd~39.36 mg·kg~(-1),平均含量为10.42 mg·kg~(-1);DEHP含量范围为nd~35.90 mg·kg~(-1),平均含量为9.46 mg·kg~(-1),占∑_6PAEs的90.8%.底层沉积物中酞酸酯总含量(∑_6PAEs)范围为nd~97.11 mg·kg~(-1),平均含量为21.64 mg·kg~(-1);DEHP含量范围为nd~93.9 mg·kg~(-1),平均含量为20.4 mg·kg~(-1),占∑_6PAEs的94.1%.底层沉积物中DEHP与DnOP的贡献率较表层高,但表层沉积物中各类PAEs及∑_6PAEs含量高于底层沉积物.在空间特征上,PAEs与废塑料处理产业集中区域密切相关,同时显示出与河道动力学相关的不均衡性.生态风险评价显示,该地PAEs污染具有较大的不可接受的生态风险.  相似文献   

14.
为研究山东省淄博市某化工园区环境空气中挥发性有机物(VOCs)的污染特征,于2019年夏季对园区12家企业厂界及2处园区边界进行VOCs采样,共获得64组有效样品,分析VOCs浓度水平及空间分布,并评价环境影响及人体健康风险.结果表明:(1)研究期间,化工园区ρ(TVOC)(TVOC为总挥发性有机物,total volatile compound)为(275.07±115.03)μg/m3,范围为46.64~460.40μg/m3,其中烷烃占比最高,浓度为(173.42±79.29)μg/m3,占总浓度的63.05%.主要贡献物种为2, 3-二甲基戊烷和2, 4-二甲基戊烷.(2)烯烃和芳香烃为主要臭氧贡献组分,关键活性物种为顺-2-丁烯、反-2-戊烯和间/对-二甲苯.异戊二烯的臭氧贡献较高,企业K、企业L为异戊二烯的主要工业来源.(3)人体健康风险评价表明,苯和乙苯对人体造成的非致癌风险均在美国环境保护局推荐的最大可接受水平内,可忽略不计.苯的平均致癌风险为8.42×10-6,会对人体造成致癌风险...  相似文献   

15.
为研究山东省淄博市某化工园区环境空气中挥发性有机物(VOCs)的污染特征,于2019年夏季对园区12家企业厂界及2处园区边界进行VOCs采样,共获得64组有效样品,分析VOCs浓度水平及空间分布,并评价环境影响及人体健康风险.结果表明:(1)研究期间,化工园区ρ(TVOC)(TVOC为总挥发性有机物,total volatile compound)为(275.07±115.03)μg/m3,范围为46.64~460.40μg/m3,其中烷烃占比最高,浓度为(173.42±79.29)μg/m3,占总浓度的63.05%.主要贡献物种为2, 3-二甲基戊烷和2, 4-二甲基戊烷.(2)烯烃和芳香烃为主要臭氧贡献组分,关键活性物种为顺-2-丁烯、反-2-戊烯和间/对-二甲苯.异戊二烯的臭氧贡献较高,企业K、企业L为异戊二烯的主要工业来源.(3)人体健康风险评价表明,苯和乙苯对人体造成的非致癌风险均在美国环境保护局推荐的最大可接受水平内,可忽略不计.苯的平均致癌风险为8.42×10-6,会对人体造成致癌风险...  相似文献   

16.
以南京市某污水处理厂及下游入江口作为研究对象,对其中微塑料的赋存特征进行研究.结果表明,污水处理厂进水中微塑料以尼龙材质为主(71.43%),颜色以黑色为主(54.76%),形状以纤维状为主(38.10%),尺寸以50~500μm为主(69.05%),丰度为4.2n/L(个/L),二级处理后污水中微塑料丰度为1.6n/L,出水微塑料丰度为0.9n/L,污水处理厂处理工艺对微塑料的去除效率为78.57%.入江口处污染负荷指数为50.99,处于较低水平,由于污水处理厂出水持续排入,微塑料造成的生态风险仍不可忽视.本文研究结果为改进污水处理厂中微塑料去除工艺设计提供了基础数据.  相似文献   

17.
近几年,"毒跑道"事件的持续爆发引起了社会公众的极大关注.邻苯二甲酸酯类(Phthalate Acid Esters, PAEs)塑化剂是塑胶跑道中的风险因子之一,但其含量监测与风险评估仍未见报道.本研究采集了13个地市中小学的83个塑胶跑道样本,使用气相色谱-质谱联用技术分析6种PAEs的含量,并应用美国环保署提供的PAEs评估方法评估其健康风险.结果表明,94.0%的塑胶跑道样品中检出PAEs,其中,邻苯二甲酸二(2-乙基己基)酯(DEHP)检出率最高,达91.6%.6种PAEs(DEHP、DBP、DIDP、DINP、DNOP、BBP)含量之和(∑6PAEs)为0~26665 mg·kg~(-1),中位数为1850 mg·kg~(-1).经评估,塑胶跑道中6种PAEs的非致癌风险均低于1,对人体无明显非致癌危害.儿童和成人PAEs的致癌风险分别为8.84×10~(-6)和8.17×10~(-6),表明有一定致癌风险,但在可接受范围内.6种PAEs中,DEHP对非致癌风险和致癌风险的贡献度最大,并且儿童的风险高于成人.因此,将PAEs纳入中小学塑胶跑道的风险物质,并进行严格管控具有显著的必要性.  相似文献   

18.
贵阳市污水处理厂中典型抗生素的污染水平及生态风险   总被引:5,自引:4,他引:1  
为了解贵阳市污水处理厂对进水中典型抗生素的去除情况及污水处理厂出水对受纳水体中水生生物的影响,对贵阳市两座污水处理厂进出水及受纳水体中9种典型抗生素进行调查.结果表明,污水处理厂进出水中抗生素均有不同程度检出,进出水中抗生素的浓度范围在ND~835. 60 ng·L~(-1)和ND~286. 60 ng·L~(-1)之间,其中氧氟沙星(OFX)浓度最高,进水分别为835. 60 ng·L~(-1)和539. 00 ng·L~(-1),出水分别为11. 74 ng·L~(-1)和286. 60 ng·L~(-1).污水处理厂对抗生素的去除率为-42. 29%~100%,其中四环素(TC)被完全去除.进出水中抗生素的浓度与国内外其它地区污水处理厂相比处于较低水平.通过对受纳水体中抗生素的检测分析发现,受纳水体中OFX的浓度最高,污水处理厂出水是受纳水体中抗生素的来源之一.通过生态风险评估也发现OFX对受纳水体中水生生物存在高风险(RQ 1).  相似文献   

19.
大型城市污水处理厂处理工艺对微塑料的去除   总被引:6,自引:6,他引:0  
贾其隆  陈浩  赵昕  李磊  聂云汉  叶建锋 《环境科学》2019,40(9):4105-4112
污水处理厂出水是自然水体中微塑料(MPs)的重要来源.本文以上海市两个大型污水处理厂(WWTP)为研究对象,分析了进水及各处理工艺出水中MPs的数浓度、形态变化及相应的去除率差异,计算了MPs在污水处理厂的归趋.结果表明,WWTP1和WWTP2进水中MPs数浓度分别为(226. 27±83. 00)个·L-1和(171. 89±62. 98)个·L-1; WWTP1对MPs的去除效率为63. 25%,略大于WWTP2的处理效率(59. 84%);两个污水处理厂一级处理工艺对MPs的去除率占整个处理工艺的70%~80%.从污水处理厂的处理工艺来看,一级处理工艺和二级处理工艺分别将污水中(48. 10%±1. 62%)和(12. 97%±0. 05%)的MPs转移到污泥中.从整体来看,污水处理厂中的最终有(38. 82%±1. 55%)的MPs随出水进入到自然水体,剩余(61. 18%±1. 55%)的MPs进入到污泥中.本研究表明,上海市污水处理厂对MPs的去除率较低,即使在处理后依旧有大量的MPs随出水进入到自然水体,仍会对生态系统造成巨大的风险.本研究提供了平原河网地区大型城市污水处理厂MPs去除及归趋的基础数据,可为进一步的MPs去除工艺设计提供参考.  相似文献   

20.
为探究以重型货车为主体的车队构成对路边大气环境VOCs的影响,于2021年10月在青岛市港区路边4个点位进行VOCs采样,并进行其污染特征、日变化特征、光化学反应活性特征和健康风险评价研究.结果表明,观测期间总挥发性有机物(TVOCs)浓度为37.05~324.14μg·m-3,平均浓度为112.44μg·m-3,烷烃是最主要的组成部分(占比达36.88%~44.15%),其次是卤代烃、含氧VOCs(OVOCs)、芳香烃、烯烃和乙炔.VOCs总浓度日变化趋势为上午和夜间高,中午和下午低,该结果受凌晨时段柴油货车尾气排放和白天光化学作用的影响较为明显.观测期间VOCs的平均臭氧生成潜势(OFP)为(253.78±69.45)μg·m-3,平均二次有机气溶胶生成潜势(AFP)为(1.13±0.51)μg·m-3.其中,芳香烃对OFP和AFP贡献率最大,分别为40.47%和93.71%.需重点关注间/对-二甲基苯、邻-二甲基苯、丙烯和甲苯等高活性物种.非致癌风险与致癌风险的估算结果表明,青岛港区路边大气V...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号