首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Four methods were developed for the analysis of fluroxypyr in soil samples from oil palm plantations. The first method involved the extraction of the herbicide with 0.05 M NaOH in methanol followed by purification using acid base partition. The concentrated material was subjected to derivatization and then cleaning process using a florisil column and finally analyzed by gas chromatography (GC) equipped with electron capture detector (ECD). By this method, the recovery of fluroxypyr from the spiked soil ranged from 70 to 104% with the minimum detection limit at 5 µg/kg. The second method involved solid liquid extraction of fluroxypyr using a horizontal shaker followed by quantification using high performance liquid chromatography (HPLC) equipped with UV detector. The recovery of fluroxypyr using this method, ranged from 80 to 120% when the soil was spiked with fluroxypyr at 0.1–0.2 µg/g soil. In the third method, the recovery of fluroxypyr was determined by solid liquid extraction using an ultrasonic bath. The recovery of fluroxypyr at spiking levels of 4–50 µg/L ranged from 88 to 98% with relative standard deviations of 3.0–5.8% with a minimum detection limit of 4 µg/kg. In the fourth method, fluroxypyr was extracted using the solid liquid extraction method followed by the cleaning up step with OASIS® HLB (polyvinyl dibenzene). The recovery of fluroxypyr was between 91 and 95% with relative standard deviations of 4.2–6.2%, respectively. The limit of detection in method 4 was further improved to 1 µg/kg. When the weight of soil used was increased 4 fold, the recovery of fluroxypyr at spiking level of 1–50 µg/kg ranged from 82–107% with relative standard deviations of 0.5–4.7%.  相似文献   

2.
The purpose of this study was to develop a method for the determination of fluroxypyr (4-amino-3,5-dichloro-6-fluro2-pyridyloxyacetic acid) residue in palm oil namely crude palm oil (CPO) and crude palm kernel oil (CPKO). The method involves the extraction of the herbicide from the oil matrix followed by low temperature precipitation and finally quantification of the residues using the high performance liquid chromatography (HPLC). The extraction efficiency of the method was evaluated by conducting recovery studies. The recovery of fluroxypyr from the fortified CPO samples ranged from 78%-111% with the relative values for the coefficient of variation ranging from 1.4 to 8.6%. Furthermore, the recovery of fluroxypyr from the spiked CPKO samples ranged from 91-107% with the relative values for the coefficient of variation ranging from 0.6 to 4.5%. The minimum detection limit of fluroxypyr in CPO and CPKO was 0.05 microg/g. The method was used to determine fluroxypyr residues from the field-treated samples of CPO and CPKO. When fluroxypyr was used for weed control in oil palm plantations no residue was detected in CPO and CPKO irrespective of the sampling interval and the dosage applied at the recommended or double the manufacturer's recommended dosage.  相似文献   

3.
Method development for determination of fluroxypyr in water   总被引:2,自引:0,他引:2  
Improved methods for extraction and clean up of fluroxypyr residue in water have been established. Two methods of fluroxypyr extraction were used, namely, Direct Measurement of fluroxypyr and Concentration of fluroxypyr onto A Solid Phase Extraction (SPE) Adsorbent, followed by elution with solvent before determination of fluroxypyr. The recovery for Direct Measurement of fluroxypyr in water containing 8-100 microg L(-1), ranged from 86 to 110% with relative standard deviation of 0.7 to 2.15%. For the second method, three types of SPE were used, viz. C18, C18 end-capped and polyvinyl dibenzene (ISOLUTE ENV+). The procedure involved concentrating the analyte from fluroxypyr-spiked water at pH 3, followed by elution of the analyte with 4 mL of acentonitrile. The recovery of fluroxypyr from the spiked sample at 1 to 50 microg L(-1) after eluting through either C18 or C18 end-capped ranged from 40-64% (with relative standard deviation of 0.7 to 2.15) and 41-65% (with standard deviation of 1.52 to 11.9). The use of ISOLUTE ENV+, gave better results than the C18, C18 end-capped or the Direct Measurement Methods. The recovery and standard deviation of fluroxypyr from spiked water using ISOLUTE ENV+ ranged from 91-102% and 2.5 to 5.3, respectively.  相似文献   

4.
The purpose of this study was to develop a method for the determination of fluroxypyr (4-amino-3,5-dichloro-6-fluro2-pyridyloxyacetic acid) residue in palm oil namely crude palm oil (CPO) and crude palm kernel oil (CPKO). The method involves the extraction of the herbicide from the oil matrix followed by low temperature precipitation and finally quantification of the residues using the high performance liquid chromatography (HPLC). The extraction efficiency of the method was evaluated by conducting recovery studies. The recovery of fluroxypyr from the fortified CPO samples ranged from 78%–111% with the relative values for the coefficient of variation ranging from 1.4 to 8.6%. Furthermore, the recovery of fluroxypyr from the spiked CPKO samples ranged from 91–107% with the relative values for the coefficient of variation ranging from 0.6 to 4.5%. The minimum detection limit of fluroxypyr in CPO and CPKO was 0.05 μg/g. The method was used to determine fluroxypyr residues from the field-treated samples of CPO and CPKO. When fluroxypyr was used for weed control in oil palm plantations no residue was detected in CPO and CPKO irrespective of the sampling interval and the dosage applied at the recommended or double the manufacturer's recommended dosage.  相似文献   

5.
A simple and rapid method has been studied for the determination of acidic herbicides (2,4-D, Dichlorprop, Dichlorprop-p, Fluazifop, Fluroxypyr, MCPA, Mecoprop and Mecoprop-p) on cereals (rye). The method involves an alkaline hydrolysis with sodium hydroxide in order to release covalently bound compounds, prior to QuEChERS extraction, followed by neutralization and analysis via liquid chromatography-double mass spectrometry LC/MS/MS. The performance of the method either with or without alkaline hydrolysis was studied in terms of recovery rates and limit of quantification (LOQ). In either case, recoveries were determined at four spiking levels (0.02 mg/kg, 0.05 mg/kg, 0.1 mg/kg and 0.5 mg/kg) with 5 replicates for each level. Mean recoveries ranged from 90 to 120 %, whereas relative standard deviations (RSD %) proved to be less than 20 %. Quantitative analysis was carried out by the internal standard (Nicarbazin) and the LC/MS/MS analysis was performed in electrospray ionisation (ESI) negative mode using a Zorbax XCB Eclipse column. The developed method was applied to the analysis of several cereals commercially available like as rye flour, oat meal, oat flakes and dehusked oat. Residue levels were found below the limit of quantification (LOQ) of the method. The method has been tested in EU Proficiency Tests for cereals with good results.  相似文献   

6.
A high-performance liquid chromatography method with diode-array detection (HPLC-DAD) is described for the determination of three neonicotinoid insecticides imidacloprid, thiacloprid, and thiamethoxam in soil and water. The soil samples were extracted with acetonitrile, while the water samples were extracted using C18 cartridges. The mean recoveries plus standard deviations for spiked soil samples were 82 +/- 4.2% for thiamethoxam, 99 +/- 4.2% for imidacloprid and 94 +/- 1.4% for thiacloprid. The recoveries for water samples ranged from 87 +/- 3.4% for thiamethoxam to 97 +/- 3.9% for imidacloprid and 97 +/- 2.6% for thiacloprid. The limits of quantitation (LOQ) were 0.1, 0.1, 0.01 mg/kg in soil (5g), and 2, 2, 0.5, micro/L in water (50 mL) for thiamethoxam, imidacloprid, and thiacloprid, respectively.  相似文献   

7.
The aim of this study was to assess the performance of a method of analyzing pesticides in rice by using pressurized liquid extraction (PLE) and to perform a preliminary monitoring by using that method. The instrumental quantification limit, instrumental detection limit, method quantification limit, and method detection limit were determined. PLE temperature was also optimized for 6 target pesticides. Mean recoveries of spiked rice with target pesticides (4 ng/g and 40 ng/g) were 83%–109% with the repeatability of the analysis, represented as relative standard deviations, ranged from 1.3% to 11% (n = 5) for PLE at 130°C. These results were satisfactory according to the method of positive list in Japan. In a preliminary analysis of 10 target pesticides in 54 commercial rice samples, ferimzone was detected in only one unpolished rice sample.  相似文献   

8.
A method using liquid chromatography and a single mix-mode solid-phase extraction cleanup for the simultaneous analysis of thiabendazole [2-(1,3-thiazol-4-yl)-1H-benzoimidazole], carbendazim [(methyl N-(1H-benzoimidazol-2-yl)-carbamate)] and 2-aminobenzimidazole (1H-benzimidazol-2-amine) in concentrated fruit juices is described. The three fungicides were isolated from the samples and concentrated by solid-phase extraction on Oasis MCX cartridges. The determination was performed by liquid chromatography with a diode array, detecting at 288 nm. In this method, the average recoveries from blank control juice samples spiked in a concentration range of 0.01–0.10 mg/kg were in the range of 81–95%, with relative standard deviations below 8%. Detection limits and limits of quantification were 4 μ g/kg and 10 μ g/kg, respectively, for each fungicide. Real juice samples were analyzed by the proposed method. The results were compared to those from liquid chromatography-tandem mass spectrometry.  相似文献   

9.
A simple, very efficient method is presented for routine analysis of herbicide Krovar I (active components bromacil and diuron) in water and soil samples. Water samples were extracted by liquid-liquid extraction with dichloromethane (DCM) as extraction solvent. For soil samples two different extraction techniques were compared: microwave-assisted solvent extraction and a shaking technique using a platform shaker. Extracts were analyzed by high performance liquid chromatography using a water:methanol gradient. Liquid chromatography was coupled with atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) for quantification of bromacil and diuron. Optimization of the APCI-MS was done by using standards in the flow injection analysis mode (FIA). Method detection limit for liquid samples for bromacil is 0.04 microg L(-1) and for diuron 0.03 microg L(-1). Method detection limit for soil samples is 0.01 microg g(-1) dry weight for both compounds. Results of analysis of field samples of water and soil are also presented.  相似文献   

10.
Extraction is an important procedure for samples that contain soil because other compounds in soil may affect analysis of estrogens. This study was conducted to evaluate three different extraction methods for 17beta-estradiol in soil. Sand, bentonite, and organic-rich silt loam were spiked with 1 mg kg(-1) of 17beta-estradiol as a model compound of estrogens. 17beta-estradiol and its metabolites, estrone and estriol, were extracted using (i) a modified Bligh and Dyer extraction, (ii) a pressurized fluid extraction, and (iii) a diethyl ether extraction, and measured by liquid chromatography tandem mass spectrometry. There were significant differences in the extraction efficiency for 17beta-estradiol among the extraction methods and the soils: the efficiencies ranged from 10% to 97%. Overall, the diethyl ether extraction method had the largest efficiency of 17beta-estradiol with 45% and 57% for bentonite and silt loam, respectively. Transformation of 17beta-estradiol to estrone and estriol in the different extraction methods was less than 3.6% during the extraction procedures. This study underlined the importance of sample preparation for estrogen analysis in soil samples.  相似文献   

11.
Static subcritical water extraction (SubWE) along with solid phase extraction (SPE) was used for the analysis of PAHs and pesticides in municipal solid waste compost. Yields obtained for PAHs in certified reference sediment (CRM 104) were acceptable. The extraction method was simple, rapid, used small sample sizes, and no sample drying was required. Analysis of samples was performed by GC/MS and HPLC. Recovery of spiked pesticides was greatest at 110 degrees C for 20 min extraction time. The optimum extraction for PAH analysis was achieved at 150 degrees C for 20 min. Addition of C-18 resin as an "alternate sorbent" upon cooling increased recovery of PAHs but not of pesticides, however, it increased the stability of atrazine and propazine at higher temperatures. Analysis of three municipal compost samples from the Dayton, OH (USA) area showed no pesticides above the detection limit, however, PAH totals for 11 PAHs were 15.97, 14.42, and 20.79 microg g(-1). The totals of six of the seven carcinogenic PAHs, for which remediation goals in the United States is 4.6 microg g(-1), were determined to be 9.89, 6.77, and 13.06 microg g(-1) dry weight. The highest PAH totals were obtained from compost containing sewage sludge.  相似文献   

12.
The aim of this work was to comparatively assess the persistence of pirimiphos methyl residues in cereals and in their milling fractions after spray application in post harvest. An analytical method, based on a slightly modified QuEChERS extraction followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) determination was validated: mean recovery was in the range 73% to 92% depending on the spiking level, and precision as RSD ranged from 11% to 16%. The analysis of treated samples revealed that pirimiphos-methyl residues were highly persistent and that no differences could be observed between wheat, durum wheat and oat. As far as the impact of the milling process on residues is concerned, pirimiphos methyl contamination was significantly reduced during both cleaning and processing, and most of the contamination was related to outer kernel fractions.  相似文献   

13.
A simple and accurate method for the analysis of acibenzolar-S-methyl (benzo[1,2,3]thiadiazole-7-carbothioic acid-S-methyl ester; CGA 245 704; ASM) and its major conversion product, benzo[1,2,3]thiadiazole-7-carboxylic acid (CGA 210 007; BTC), in soils is presented. ASM extraction from soil samples was performed using acetonitrile and BTC was extracted with a mixture of potassium phosphate buffer (0.5 M, pH 3) and acetonitrile (70:30 %, v/v). Both extracts were directly analyzed in a high-performance liquid chromatography-diode array detection (HPLC-DAD) system. Pesticide separation was achieved on a C18 (4.6 mm × 150 mm, 5 μm) analytical column with a isocratic elution of acetonitrile:water 40:60 % (v/v) with 0.6 mL L?1 acetic acid at a flow rate of 1 mL min?1. Linear regression coefficients (r (2)) of the external calibration curves were always above 0.9997. The limits of detection (LOD) and quantification (LOQ) of the method were 0.005 and 0.02 mg kg?1 for ASM, and 0.01 and 0.05 mg kg?1 for BTC, respectively. Recoveries were investigated at six fortification levels and were in the range of 90-120 % for ASM and 74-96 % for BTC with relative standard deviations (RSDs) below 11 % in all cases. The method was also validated by analyzing freshly spiked soil samples with 2.7% organic matter content at 0.5 mg kg?1 level, with slightly lower recovery values only for ASM. Moreover, recoveries for intermediate aged residues of the analytes were similar to fresh residues. This method was also applied to determine ASM half-life (t(?) = 8.7 h) and the rate of the acidic metabolite formation.  相似文献   

14.
Feng K  Yu BY  Ge DM  Wong MH  Wang XC  Cao ZH 《Chemosphere》2003,50(6):683-687
The use of organo-chlorine (DDT and HCH) has been banned in China for 20 years. A field survey was carried out during 1999-2000 in the Taihu Lake Region. Organo-chlorine pesticide (OCP) residues in soil, water, fish and sediment samples were investigated. DDT was detected in 5 out of 10 samples with concentration ranging from 0.3 to 5.3 microg/kg in the surface (0-15 cm) layer, 6 out of 10 with 0.5 to 4.0 microg/kg in the subsoil layer (16-30 cm), and 4 of 10 with 0 to 2.7 microg/ kg in the deep soil layer (31-50 cm). Results for HCH residues in soil samples were similar to those of DDT. These results indicate that OCP residues in 0-50 cm profile had been leached out or degraded to safe level. In river water DDT was detected in 10 out of 13 samples ranging from 0.2 to 9.3 microg/l, with an average of 1.0 microg/l. While HCH was detected in 12 out of 13 samples ranging from 0.02 to 36.1 microg/l, with an average 5.6 microg/l. DDT residues in sediment ranged from 0.1 to 8.8 microg/kg, while HCH ranged from 0.3 to 66.5 microg/kg. DDT residues in fish body ranged from 3.7 to 23.5 microg/kg and HCH ranged from 3.7 to 132 microg/kg. These results demonstrate an accumulation through food chain (from soil-water-sediment-microbes-crop-fish-... etc.), also that HCH residues are generally more persistent than DDT residues. However, all these data are well below than the state warning standard limit.  相似文献   

15.
Chaves A  Shea D  Danehower D 《Chemosphere》2008,71(4):629-638
We present a method using gas chromatography (GC) and liquid chromatography (LC) coupled to a mass selective detector to measure concentrations of the fungicide chlorothalonil and several of its metabolites in soil and water. The methods employed solid-phase extraction using a hydrophobic polymeric phase for the isolation of analytes. In lake water, average analyte recoveries ranged from 70% to 110%, with exception of pentachloronitrobenzene that gave low recoveries (23%). The method detection limits were determined to be in the range of 1 and 0.1microg l(-1) for the LC and GC methods, respectively. In soil samples, recoveries ranged from 80% to 95% for 4-hydroxy-2,5,6-trichloroisophthalonitrile (metabolite II) and 1,3-dicarbamoyl-2,4,5,6-tetrachlorobenzene (metabolite III). Limits of detection (LOD) were 0.05 and 0.02microg g(-1), respectively. Chlorothalonil and other metabolites were analyzed by GC giving recoveries ranging from 54% to 130% with LOD of 0.001-0.005microg g(-1).  相似文献   

16.
A method capable of simultaneously detecting residues of three sulfonylurea herbicides at microgram/l and microgram/kg level in water and alkaline soils has been described. The method is based on solid phase extraction and HPLC with UV detection. In alkaline soils especially those containing low organic carbon it was possible to extract the herbicides with de-ionised water and no clean up step was needed. Soil samples spiked with technical grade triasulfuron, metsulfuron-methyl and chlorsulfuron were extracted twice by shaking with de-ionised water for one hour and centrifuging at 10,000 rpm for 15 minutes. Supernatants filtered through glass micro-fibre filters were passed through C18 cartridges previously pre-conditioned with methanol and de-ionised water at a flow rate of < 20 ml/min. Residues of the herbicides retained on the cartridge were eluted with acidified methanol. The eluate was analysed by HPLC. A C18 column was used with a mobile phase of methanol/water (40 + 60, V/V for for the herbicide residues were 1.0 microgram/l and 3 micrograms/kg in water and soil, respectively. The average recoveries for water samples ranged from 73-94%, while for soil samples recoveries were 77-97% for the three compounds studied.  相似文献   

17.
Analysis and residue levels of forchlorfenuron (CPPU) in watermelons   总被引:2,自引:0,他引:2  
This paper describes the application of liquid chromatography-tandem mass spectrometry (LC/MS-MS) for analysis of residues of forchlorfenuron (CPPU), a new plant growth regulator, in watermelons, after a sample preparation step based on the buffered Quick, Easy, Cheap, Effective, Rugged and Safe extraction method. Analytical determinations were carried out in a triple quadrupole system fitted with an electrospray interphase operating in the positive ionisation mode (ESI+). Three simultaneous MS-MS transitions of the quasi-molecular ion m/z 248 (precursor ion) were monitored for data acquisition (248 > 129, 248 > 155, and 248 > 248), using the transition 248 > 129 for quantitation. Recovery studies on watermelons at levels of 1-200 microg/kg, performing five replicates at each level and using bracketing single-level calibration with matrix-matched standards for quantitation, gave forchlorfenuron mean recoveries ranging from 82 to 106% with relative standard deviations (RSD) lower than 18%. The limit of determination was established at 1 microg/kg. The method was applied to evaluate the persistence of forchlorfenuron residues in watermelons grown in plastic greenhouses, after applying an individual spray treatment to the flower ovary at the anthesis stage (45 mu g/flower and 60 mu g/flower for cv "Extazy" and cv "reina de corazones" watermelons, respectively). One month after treatment, 20 "Extazy" watermelon units (1.5-2 kg/unit) and 20 "Reina de corazones" watermelon units (4-5 kg/unit) were collected and analyzed individually. None of the samples contained forchlorfenuron residues higher than 1 microg/kg.  相似文献   

18.
Tris(4-chlorophenyl)methanol (TCP) and tris(4-chlorophenyl)methane (TCPMe) were determined in aquatic organisms and sediment by a method based on Soxhlet extraction, gel permeation chromatography, fractionation over silica and gas chromatography/mass spectrometry (GC/MS) analysis. TCPMe was identified as the 4-substituted isomer after synthesis of this compound. TCP could be determined by GC/MS with negative chemical ionistation (GC/NCI-MS) with a detection limit of 0.02 g kg(-1) and a recovery of 90%. TCP concentrations in marine mammals from the North Sea and Dutch Wadden Sea ranged from 0.2 to 2 mg kg(-1), and those in marine and freshwater fish samples from 0.005 to 0.4 mg kg(-1) on a lipid wt basis. TCP concentrations in two Rhine delta sediment samples were 1.2 and 3.0 microg kg(-1) dry wt, respectively. TCPMe concentrations, determined by GC/MS with electron impact (GC/EI-MS), were 10-50% of the TCP concentration in all samples analysed.  相似文献   

19.
We present a new analytical procedure for the extraction and determination of natural estrogens in soils based on pressurised liquid extraction and GC-MS determination. After testing twelve solvents, acetone proved to be the most efficient extractant. The optimum extraction temperature is 60 degrees C. Soil extracts have to be purified and concentrated by C-18 solid phase extraction. The dried extracts are derivatised by N-methyl-N-(trimethylsilyl)trifluoro-acetamide before measurement by GC-MS. Recoveries of 79-103% with relative standard deviations 相似文献   

20.
An analytical method was developed for determining organophosphate pesticides (OPP) and pyrethroid pesticides (PYR) in duplicate-diet solid food. The method consisted of pressurized liquid extraction (PLE) with dichloromethane followed by cleanup with gel permeation and solid phase extraction columns and gas chromatography/mass spectrometry (GC/MS) analysis. Quantitative recoveries (73-117 %) of the target pesticides were obtained for spiked duplicate-diet food samples. The percent standard deviation (% RSD) of replicate food samples was within ± 20 %. Another method was developed for determining a common OPP metabolite, 3, 5, 6-trichloro-2-pyridinol (TCP) in duplicate-diet food. The method consisted of a PLE with methanol followed by liquid-liquid partitioning, derivatization, and GC/MS analysis. Recoveries of TCP ranged from 83 to 101 % for spiked duplicate-diet food samples. The % RSD of replicate food samples was within ± 15 %. The results confirmed that these methods are reliable and robust, and that they can be used in routine analysis. In addition, a storage stability study for a common OPP, chlorpyrifos (CPF), in solid food samples was performed. The fortified (15)N-(13)C-labeled CPF was stable over 16 mo storage at -20° C in the dark. The developed analytical methods were successfully applied to 278 duplicate-diet food samples from preschool children, demonstrating that these methods are robust and suitable for routine analysis in future exposure monitoring studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号