首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
为考察遂宁市辖区内集中式饮用水水源地污染物钡的分布特征和健康风险水平,通过电感耦合等离子体原子发射光谱法对研究区域内市级、县级和乡镇级所有在用的56个集中式饮用水水源地钡的浓度进行分析检测,借助空间分析与统计分析的结果,探讨了其空间分布和浓度差异,并利用环境健康风险评价模型,对不同类型水源地钡的健康风险进行了评价。结果表明,38个地表水水源地钡的浓度范围为0.065~0.180 mg/L,均值为0.110 mg/L;18个地下水水源地钡的浓度范围为0.027~0.370 mg/L,均值为0.130 mg/L。地表水与地下水水源地间钡的浓度差异具有统计学意义(P0.05),钡的空间分布也存在不同程度的差异性。各水源地中的钡经饮用和皮肤暴露两种途径对成人和儿童所引起的非致癌风险值为1.34×10~(-8)~1.62×10~(-8),远低于推荐的最大可接受风险水平(1.0×10~(-6)),各水源地因污染物钡导致的非致癌风险极低。  相似文献   

2.
Blackfoot disease (BFD) had occurred seriously in the Yichu, Hsuehchia, Putai, and Peimen townships of Chia-Nan District of Taiwan in the early days. These four townships are the districts of fishpond cultivation domestically in Taiwan. Groundwater becomes the main water supply because of short income in surface water. The problems of over pumping in groundwater may not only result in land subsidence and seawater intrusion but also be harmful to the health of human giving rise to the bioaccumulation via food chain in groundwater with arsenic (As). This research uses sequential indicator simulation (SIS) to characterize the spatial arsenic distribution in groundwater in the four townships. Risk assessment is applied to explore the dilution ratio (DR) of groundwater utilization, which is defined as the ratio showing the volume of groundwater utilization compared to pond water, for fish farming in the range of target cancer risk (TR) especially on the magnitude of 10?4~10?6. Our study results reveal that the 50th percentile of groundwater DRs served as a regulation standard can be used to perform fish farm groundwater management for a TR of 10?6. For a TR of 5?×?10?6, we suggest using the 75th percentile of DR for groundwater management. For a TR of 10?5, we suggest using the 95th percentile of the DR standard for performing groundwater management in fish farm areas. For the TR of exceeding 5?×?10?5, we do not suggest establishing groundwater management standards under these risk standards. Based on the research results, we suggest that establishing a TR at 10?5 and using the 95th percentile of DR are best for groundwater management in fish farm areas.  相似文献   

3.
Evaluation of groundwater quality represents significant input for the development and utilization of water resources. Increasing exploitation of groundwater and man-made pollution has seriously affected the groundwater quality of the North China Plain, such as in the Xuzhou region which is the target of this investigation. The assessment of the groundwater quality and sources in the region was based on analyses of water chemistry and 222Rn activity in samples collected from wells penetrating unconfined and confined aquifers. The results indicate that most of the untreated groundwater in the region is not suitable for the long-term drinking based on permissible limits of the Chinese Environmental Agency and the World Health Organization. However, the groundwater can be used as healthy source of drinking water when they can pass the biological test and softening water treatment. Most of the groundwater is suitable for irrigation. Excessive amounts of SO42? and NO3? are attributed to mainly influence of wastewater, irrigation, and dissolution of sulfate minerals in local coal strata. The major source of the groundwater is meteoric recharge with addition from irrigation and wastewater discharges. Variability of the water quality seems to be also reflecting the type of aquifers where the highest concentration of HCO3? occurs in water of the carbonate fractured aquifer, while the highest Cl? concentration in the unconfined aquifer. Source of 222Rn activity is mainly related to the rock-water interaction with possible addition from the agricultural fertilizers. Protection of groundwater is vital to maintain sustainable drinking quality through reducing infiltration of irrigation water and wastewater.  相似文献   

4.
Groundwater quality significantly affects public health. In order to better understand groundwater suitability, a total of 887 shallow groundwater samples were collected from the Hetao Plain (HP), Inner Mongolia, China; the maximum and minimum health guideline values of each element were established in this work. Subsequently, the desirability functions (DFs) theory was employed to evaluate the human health risk of groundwater. The results indicate that 780 of the samples were unsuitable for drinking purposes due to the iron, total dissolved solids (TDS), arsenic, strontium, fluoride, and manganese concentrations present, all of which exceeded their maximum guideline value (MaGV). Only 107 samples were suitable for drinking use; however, these samples also have adverse effects on human health to some extent, due to the extremely lower concentrations of nutrient elements and existence of non-nutrient elements. Based on the observed results, groundwater that is unsuitable for drinking use must undergo bacteriological treatment prior to consumption. It was necessary for residents in the western, central, and northeastern parts of the study area are required to be supplied with certain nutrient elements, such as iron, iodine, molybdenum, manganese, and lithium. According to the human health risk assessment of groundwater, the general public can safely and reasonably consume the groundwater for drinking, agriculture irrigation, and industrial purposes.  相似文献   

5.
6.
为支撑国家地下水环境管理与污染防治,在系统梳理我国地下水环境监测发展历程的基础上,分析了当前地下水环境监测的技术特点,从支撑国家地下水环境质量考核的角度出发,研究构建了涵盖点位布设、监测指标选取、样品采集与保存、样品分析测试、质量保证与质量控制、质量评价等全流程的监测技术体系和质量管理体系,建立了"十四五"国家地下水环境质量考核监测网络建设及业务运行模式。基于覆盖全国所有地级及以上城市、主要水文地质单元、典型规模以上地下水型饮用水水源地与重点污染源的考核监测网络,建立了完善的地下水环境监测技术与质量管理体系,有效支撑了国家地下水环境质量考核,有助于各级管理部门掌握地下水环境质量状况,有针对性地开展地下水污染防治,为逐步改善地下水环境质量提供基础保障。  相似文献   

7.
Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in drinking water resources have been carried out for the first time in Henan Province, China. Water samples collected from four river systems and their tributaries, as well as groundwater resources, were analyzed according to EPA method 525.2. Total of 68 water samples were collected in 18 cities in Henan province in May, August and November, 2001. Concentrations of sum of 16 priority PAHs in water samples ranged from 15 to 844 ng/L with a mean value of 178 +/- 210 ng/L (n = 68). The spatial and temporal distribution of PAHs showed that the Huanghe and the Huaihe river systems had relatively higher concentrations of total PAHs. Higher concentrations of total PAHs were observed in August and November than in May, with respective mean values of 262, 232 and 33.6 ng/L. Ratios of Ant/(Ant + Phe) and Flur/(Flur + Pyr) were calculated to evaluate the possible sources of PAH contamination, which indicated that the coal combustion sources were the main contributors to PAHs in most drinking water resources. Some petrogenic (or pyrolytic) sources of PAHs were also found. The toxic equivalency factors (TEFs) were used to calculate benzo[a]pyrene equivalents (BaPE) for water samples. The average value of BaPE was 0.6 ng/L. The values in most stations were much lower than the guideline values in drinking water of Chinese Environmental Protection Agency (CEPA, 2.8 ng/L) and the US Environmental Protection Agency (US EPA, 200 ng/L). Overall, the drinking water resources in Henan province showed some carcinogenic potential.  相似文献   

8.
Probability-based nitrate contamination map of groundwater in Kinmen   总被引:1,自引:0,他引:1  
Groundwater supplies over 50 % of drinking water in Kinmen. Approximately 16.8 % of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 ?-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate–N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate–N in residential well water using logistic regression (LR) model. A probability-based nitrate–N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate–N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7 %. The highest probability of nitrate–N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC–pH-probability curve of nitrate–N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate–N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate–N contamination zones.  相似文献   

9.
Groundwater contamination and its effect on health in Turkey   总被引:1,自引:0,他引:1  
The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Ayd?n. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper K?z?l?rmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in ?stanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in ?anakkale, ?zmir, Mu?la, Kütahya, and Bal?kesir, cause serious groundwater quality problems.  相似文献   

10.
This paper presents the results of analyses of water samples taken from water intakes supplying one of the districts located near the city of Wroc?aw. Surprisingly high concentrations of polychlorinated biphenyls and chloroorganic pesticides, classified as persistent organic pollutants (POPs), were detected in the monitored sites. Basing on the analytical and toxicological data, the individual health risks related to carcinogenic effects (excess cancer risk over a lifetime) in humans were assessed, resulting from direct ingestion of community water. Also noncarcinogenic effects resulting from exposure to the examined POPs were determined. The conservative approach to risk assessment, taking into account a safety margin for data incompleteness, was adopted. The carcinogenic risk was found to slightly exceed the unconditionally acceptable risk of 10?6 in the case of polychlorinated biphenyls and hexachlorocyclohexane, for all the inhabitant populations. The determined values of noncarcinogenic effects expressed by hazard quotient and hazard index indicate that the water pollutants and their concentrations do not cause an increase in noncarcinogenic incidences in the inhabitants using the monitored water sources.  相似文献   

11.
Groundwater pollution resulting from anthropogenic activities and poor effluent management is on the rise in Nigeria. Hence, groundwater used for domestic purposes is questionable and therefore calls for scientific scrutiny. Investigation of hydrochemical interactions and quality of groundwater resource is essential in order to monitor and identify sources of water pollutants. As a result, groundwater samples were collected from 21 locations in Abeokuta South, Nigeria and analyzed for physicochemical parameters using standard methods. Results obtained were subjected to hydrochemical and geospatial analyses. Water quality parameters investigated exhibited wide variations from location to location. Fe2+, Mg2+, SO42?, Cl?, total hardness (TH), Mn, Na+, NO3?, SiO2, and alkalinity exhibited the highest levels of variation with coefficients of variation of 131.3, 92.8, 83.9, 76.7, 65.9, 64.3, 57.6, 57.2, 57.0, and 52.5, respectively. The average pH value was 6.76 with 71% of the water samples being slightly acidic. Na2+, Mg2+, Fe2+, and EC contents exhibited the most violation of drinking water standards with percent violations of 100, 52.4, 47.6, and 47.6%, respectively. Parameters, such as Mn, Ca2+, NO3?, and CO32?, were within the WHO guideline values for drinking water in all the samples. The highest level of significant correlation was found to exist between Na+ and Cl? (r?=?0.84, α?=?0.01). Six principal components, which explained 83.5% of the variation in water quality, were extracted with the first (34.1%) and second components (15.7%) representing the influence of mineral dissolution and anthropogenic practices, respectively, on the hydrochemistry of the area. Four hydrochemical clusters were identified with distinctly partitioned water quality. Further analysis revealed that 38, 29, 24, and 9% of the samples were the Na-K-HCO3, Na-K-Cl-SO4, Ca-Mg-HCO3, and Ca-Mg-Cl-SO4 types, respectively. Anthropogenic activities are increasing threat to groundwater quality in the study location and therefore call for urgent attention. There is also a need for routine monitoring of groundwater in Abeokuta.  相似文献   

12.
This study was undertaken to assess the heavy metal concentration of the drinking water with respect to zinc, copper, cadmium, manganese, lead and arsenic in Kamrup district of Assam, India. Ground water samples were collected from tube wells, deep tube wells and ring wells covering all the major hydrogeological environs. Heavy metals in groundwater are estimated by using Atomic Absorption Spectrometer, Perkin Elmer Analyst 200. Data were assessed statistically to find the distribution pattern and other related information for each metal. The study revealed that a good number of the drinking water sources were contaminated with cadmium, manganese and lead. Arsenic concentrations although did not exceeded WHO limits but was found to be slightly elevated. Copper and zinc concentrations were found to be within the prescribed WHO limits. An attempt has also been made to ascertain the possible source of origin of the metals. Positive and significant correlation existing between manganese with zinc and copper indicates towards their similar source of origin and mobility. In view of the present study and the level of heavy metal contamination, it could be suggested to test the potability of the water sources before using it for drinking purpose.  相似文献   

13.
This study investigated the magnitude of heavy metal contamination and determined the carcinogenic as well as non-carcinogenic risks associated with selected food consumption in Bangladesh. Commonly consumed varieties of rice, vegetables, and fish samples were analyzed to measure the concentrations of heavy metals such as cadmium, chromium, lead, arsenic, manganese, nickel, and zinc. These staple food items showed the greatest probabilities of heavy metal contamination in different phases of their production and marketing. Wide variations of metal concentrations were observed. Specifically, estimated daily intakes of arsenic and cadmium exceeded allowable daily intakes in all three food items. Toxicity scores of the metals were evaluated, and a comprehensive risk assessment was conducted to quantify the risks associated with the daily food consumption. Except for cadmium and lead in vegetables, all the contaminants present in each food item posed significant levels of carcinogenic risks up to 2.99?×?10?3 compared to the EPA recommended carcinogenic risk level of 1.0?×?10?6. Cadmium and arsenic intake due to rice consumption also posed unsafe levels of non-carcinogenic risks of 4.587 and 6.648, respectively, compared to the EPA recommended non-carcinogenic risk level of 1.0. Finally, a revised set of permissible limits was proposed for the heavy metals detected in the food items. Those permissible limits would ensure the risks associated with food consumption below the allowable carcinogenic and non-carcinogenic risk levels. Thus, this comprehensive approach would provide guidelines to formulate adequate control measures and regulatory limits of toxic metals in foods produced and marketed in Bangladesh.  相似文献   

14.
The WWF water risk assessment tool is a universal methodology, as the establishment of its indicators fully consider various types of natural and social environments. When this tool is applied to China, a large country with a complex water situation in a period of rapid development, appropriate localization adjustment is necessary to ensure that indicators are generally stable and assessment results are internationally comparable. Based on the localization of WWF water risk assessment tools, this is the first application assessing water risk in China in terms of physical risks, regulatory risks and reputation risks. It explores the sources of China's water risk from industrial sectors and constructs a classification index system according to the degree of water dependence and the level of water pollution. Using the classification index system and relevant data, we find the key industrial sectors, enterprises and production processes to reduce water risk in China's ten major water valleys and offer some effective and practical management suggestions. Due to the large regional differences of water risk-bearing capacity in China, the assessment results should be interpreted in combination with specific national conditions of China and emphasis should be laid on key areas and industries.  相似文献   

15.
Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking–cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p?=?0.04) from 26 μg L?1 in summer to 6 μg L?1 in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day ?1) and female (2.6 and 1.2 L day?1) participants from summer to winter. Arsenic intake through drinking water decreased (p?=?0.04) in winter (29 μg day?1) than in summer (100 μg day?1), and urinary arsenic concentration decreased (p?=?0.018) in winter (41 μg L?1) than in summer (69 μg L?1). Dietary arsenic intake remained unchanged (p?=?0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.  相似文献   

16.
我国典型村庄农村环境质量监测与评价   总被引:2,自引:1,他引:1  
选取典型村庄,基于农村环境质量监测和评价方法,对典型村庄2014年农村环境质量进行监测和评价,结果表明:典型村庄环境空气质量状况总体良好,达标比例为82.0%,超标村庄多分布在中国西北地区;农村饮用水源地水质较差,总体水质达标比例为67.1%,地表水和地下水饮用水源地水质达标比例分别为89.8%和52.6%;农村地表水环境质量欠佳,Ⅰ~Ⅲ类水质断面占72.7%,饮用水水源地和地表水水质各地区均存在超标村庄;部分地区土壤重金属超标问题较为突出,出现监测项目超标情况村庄占20.6%,土壤超标村庄主要集中在中国东北、华中和华南等地区;农村生态质量状况相对较好,"较差"和"差"的县域主要分布在中国西北和华中北部地区。  相似文献   

17.
Nitrate contamination of water sources is a concern where large amounts of nitrogen fertilizers are regularly applied to soils. Ingested nitrate from dietary sources and drinking water can be converted to nitrite and ultimately to N-nitroso compounds, many of which are known carcinogens. Epidemiologic studies of drinking water nitrate and cancer report mixed findings; a criticism is the use of nitrate concentrations from retrospective drinking water data to assign exposure levels. Residential point-of-use nitrate data are scarce; gaps in historical data for municipal supply finished water hamper exposure classification efforts. We used generalized linear regression models to estimate and compare historical raw water and finished water nitrate levels (1960s--1990s) in single source Iowa municipal supplies to determine whether raw water monitoring data could supplement finished water data to improve exposure assessment. Comparison of raw water and finished water samples (same sampling date) showed a significant difference in nitrate levels in municipalities using rivers; municipalities using other surface water or alluvial groundwater had no difference in nitrate levels. A regional aggregation of alluvial groundwater municipalities was constructed based on results from a previous study showing regional differences in nitrate contamination of private wells; results from this analysis were mixed, dependent upon region and decade. These analyses demonstrate using historical raw water nitrate monitoring data to supplement finished water data for exposure assessment is appropriate for individual Iowa municipal supplies using alluvial groundwater, lakes or reservoirs. Using alluvial raw water data on a regional basis is dependent on region and decade.  相似文献   

18.
The Songhua River is the third largest river in China and the primary source of drinking and irrigation water for northeastern China. The distribution of 16 priority polycyclic aromatic hydrocarbons (PAHs) in water [dissolved water (DW) and suspended particulate matter (SPM)], sediment, and soil in the river basin was investigated, and the associated risk of cancer from these PAHs was also assessed. The total concentration of PAHs ranged from 13.9 to 161 ng L?1 in DW, 9.21 to 83.1 ng L?1 in SPM, 20.5 to 632 ng g?1 dw (dry weight) in sediment, and from 30.1 to 870 ng g?1 dw in soil. The compositional pattern of PAHs indicated that three-ring PAHs were predominant in DW and SPM samples, while four-ring PAHs dominated in sediment and soil samples. The spatial distribution of PAHs revealed some site-specific sources along the river, with principal component analysis indicating that these were from pyrogenic sources (such as coal and biomass combustion, and vehicle emissions) and coke oven emission distinguished as the main source of PAHs in the Songhua River Basin. Based on the ingestion of PAH-contaminated drinking water from the Songhua River, cancer risk was quantitatively estimated by combining the Incremental Lifetime Cancer Risk assessment model and BaP-equivalent concentration for five age groups of people (adults, teenagers, children, toddlers, and infants). Overall, the results suggest that the estimated integrated lifetime cancer risk for all groups was in acceptable levels. This study is the first attempt to provide information on the cancer risk of PAHs in drinking water from the Songhua River.  相似文献   

19.
A study was carried out in the Island and mainland regions of Ramanathapuram District to characterize the physico-chemical characteristics of 87 groundwater samples in Island and 112 groundwater samples in mainland which include pH, EC, TDS, salinity, total alkalinity, calcium hardness, magnesium hardness, total hardness, chloride and fluoride. Heavy inorganic load in majority of the groundwater samples has been estimated due to the salinity, TDS, TH and chloride beyond the threshold level which substantiates the percolation of sea water into the freshwater confined zones. Although the groundwater sources are available in plenty, the scarcity of potable water is most prevalent in this coastal area. The Water Quality Index (WQI) and Langeleir Saturation Index (LSI) have also been calculated to know the potable and corrosive/incrusting nature of the water samples. The statistical tools such as principal component analysis, box plots and correlation matrix have also been used to explain the influence of different physico-chemical parameters with respect to one another among the groundwater samples. The percentage of groundwater samples in mainland was more than that in Island with respect to the acceptable limit of WHO drinking standard, especially in TDS, CH, TH and chloride but the converse is observed in the case of fluoride. About 8 % of the mainland aquifers and 42 % of Island aquifers were identified to have fluoride greater than 1.5 mg/l. The signature of salt-water intrusion is observed from the ratio of Cl/CO 3 2? ?+?HCO3 and TA/TH. A proper management plan to cater potable water to the immediate needs of the people is to be envisaged.  相似文献   

20.
In groundwater, used for drinking water supply in the greater industrial area of Thessaloniki, in Northern Greece, concentrations of total arsenic exceeded the WHO provisional guideline value and the EU maximum contaminant level (MCL) of 10 μg/L. The concentration of total arsenic was in the range between 4–130 μg/L, whereas the median value was 36 μg/L and the average concentration 46 μg/L. Nine out of the eleven wells contained total arsenic at concentration higher than 10 μg/L and it should be stressed that 6 of them contain arsenic at concentrations between 10 (new MCL) and 50 μg/L (previous MCL). The examined groundwaters were found to contain elevated concentrations of manganese and phosphate. Arsenic had a positive correlation with the pH, indicating the possible effect of pH on arsenic mobilisation. These findings emerge the problem of contamination from arsenic, since, according to the EU directive 98/83, all drinking water sources within the European Union should have achieved compliance with the new limits by 12/2003, implying that the situation requires urgent remedial action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号