首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stream restoration projects are often based on morphological form or stream type and, as a result, there needs to be a clear tie established between form and function of the stream. An examination of the literature identifies numerous relationships in naturally forming streams that link morphologic form and stream processes. Urban stream restoration designs often work around infrastructure and incorporate bank stabilization and grade control structures. Because of these imposed constraints and highly altered hydrologic and sediment discharge regimens, the design of urban channel projects is rather unclear. In this paper, we examine the state of the art in relationships between form and processes, the strengths and weaknesses of these existing relationships, and the current lack of understanding in applying these relationships in the urban environment. In particular, we identify relationships that are critical to urban stream restoration projects and provide recommendations for future research into how this information can be used to improve urban stream restoration design. It is also suggested that improving the success of urban restoration projects requires further investigation into incorporating process-based methodologies, which can potentially reduce ambiguity in the design and the necessity of using an abundant amount of in-stream structures.  相似文献   

2.
Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.  相似文献   

3.
Linking Theory and Practice for Restoration of Step-Pool Streams   总被引:1,自引:0,他引:1  
Step-pools sequences are increasingly used to restore stream channels. This increase corresponds to significant advances in theory for step-pools in recent years. The need for step-pools in stream restoration arises as urban development encroaches into steep terrain in response to population pressures, as stream channels in lower-gradient areas require stabilization due to hydrological alterations associated with land-use changes, and as step-pools are recognized for their potential to enhance stream habitats. Despite an increasingly voluminous literature and great demand for restoration using step-pool sequences, however, the link between theory and practice is limited. In this article, we present four unique cases of stream restoration using step-pools, including the evolution of the approaches, the project designs, and adjustments in the system following restoration. Baxter Creek in El Cerrito, California demonstrates an early application of artificial step-pools in which natural adjustments occurred toward geomorphic stability and ecological improvement. Restoration of East Alamo Creek in a large residential development near San Ramon, California illustrates an example of step-pools increasingly used in locations where such a channel form would not naturally occur. Construction of a step-pool channel in Karnowsky Creek within the Siuslaw National Forest, Oregon overcame constraints posed by access and the type and availability of materials; the placement of logs allowed natural scouring below steps. Dry Canyon Creek on the property of the Mountains Restoration Trust in Calabasas, California afforded a somewhat experimental approach to designing step-pools, allowing observation and learning in the future. These cases demonstrate how theories and relationships developed for step-pool sequences over the past two decades have been applied in real-world settings. The lessons from these examples enable us to develop considerations useful for deriving an appropriate course of design, approval, and construction of artificial step-pool systems. They also raise additional fundamental questions concerning appropriate strategies for restoration of step-pool streams. Outstanding challenges are highlighted as opportunities for continuing theoretical work.  相似文献   

4.
The authors' personal experience in watershed planning and decision making in the agricultural Midwest is described to illustrate how: (1) formalization of the process of community-based management is not sufficient to guarantee that local people will meaningfully consider scientific information and opinion when making decisions about watersheds, and (2) genuine social interaction between scientists and nonscientists requires a considerable investment of time and energy on the part of the scientist to develop personal relationships with nonscientists based on trust and mutual exchange of information. This experience provides the basis for developing a general conceptual model of the interaction between scientists and nonscientists in community-based watershed management in the agricultural Midwest. An important aspect of integrating science effectively into community-based decision making is the need to revise existing concepts to accommodate place-based contexts. Stream naturalization is introduced as an alternative to stream restoration and rehabilitation, which are viewed as inappropriate management strategies in human-dominated environments. Stream naturalization seeks to establish sustainable, morphologically and hydraulically varied, yet dynamically stable fluvial systems that are capable of supporting healthy, biologically diverse aquatic ecosystems. This general goal is consistent with the types of stream-management practices emerging from community-based decision making in human-dominated, agricultural landscapes. Further research on the linkages between geomorphological and ecological dynamics of human-modified agricultural streams over multiple spatial and temporal scales is needed to provide a sound scientific framework for stream naturalization.  相似文献   

5.
Huang, Jung-Chen, William J. Mitsch, and Andrew D. Ward, 2010. Design of Experimental Streams for Simulating Headwater Stream Restoration. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00467.x Abstract: Headwater streams flowing through agricultural fields in the midwestern United States have been extensively modified to accommodate subsurface drainage systems, resulting in deepened, straightened, and widened streams. To restore these headwater streams, partial or total reconstruction of channels is frequently attempted. There are different approaches to reconstructing the channel, yet there is little evidence that indicates which promises more success and there has been no experimental work to evaluate these approaches. This study designs three experimental channels – two-stage, self-design, and straightened channels – on a human-created swale at the Olentangy River Wetland Research Park, Columbus, Ohio, for long-term evaluation of headwater stream evolution after restoration. The swale receives a continuous flow of pumped river water from upstream wetlands. Using streamflow and stage data for the past 12 years, a channel-forming discharge of 0.18 m3/s was estimated from bankfull discharge, effective discharge, and recurrence interval. These stream channels, after construction, will be monitored to evaluate physical, chemical, and biological responses to different channels over a decade-long experiment. We hypothesize that the three stream restoration designs will eventually evolve to a similar channel form but with different time periods for convergence. Monitoring the frequency and magnitude of changes over at least 10 years is needed to document the most stable restored channel form.  相似文献   

6.
The complexity of fluvial systems necessitates interdisciplinary research in fluvial geomorphology and aquatic ecology to develop a fundamental understanding of interconnections among biotic and abiotic aspects of these systems. Integrated knowledge of this type is vital for environmental management of streams in human-dominated environments. A conceptual framework is presented for integrating geomorphological and ecological research on streams in East Central Illinois, USA, a glaciated low-relief agricultural landscape. The framework embodies a multiscale perspective in which a geomorphological conception of the fluvial system is used to define a hierarchy of characteristic spatial scales for exploring important linkages between stream geomorphology and aquatic ecology. The focus ecologically is on fish, because a rich body of historical information exists on fisheries in East Central Illinois and because past work has suggested that availability of physical habitat is a major factor influencing the community characteristics of fish in this human-altered environment. The hierarchy embodied in the framework includes the network, link, planform, bar unit, bar element, and bedform/grain scales. Background knowledge from past research is drawn upon to identify potential linkages between geomorphological and ecological conditions at each of these scales. The conceptual framework is useful for guiding integrated ecogeomorphological research at specific scales and across different scales. It also is helpful for illustrating how widespread human modification of streams has catastrophically altered the scalar structure of fluvial systems in East Central Illinois. Knowledge emerging from the integrated research provides a basis for environmental-management schemes directed toward stream naturalization.  相似文献   

7.
Visual‐based rapid assessment techniques provide an efficient method for characterizing the restoration potential of streams, with many focusing on channel stability and instream habitat features. Few studies, however, have compared these techniques to see if they result in differing restoration priorities. Three rapid assessment techniques were contrasted at three wild trout streams in western New York with different amounts of channel disturbance. Two methods focused only on geomorphic stability, whereas the third addressed physical habitat condition. Habitat assessment scores were not correlated with scores for either geomorphic assessment method and they varied more between channels with different degrees of disturbance. A model based on dynamic equilibrium concepts best explains the variation among the streams and techniques because it accounts for a stream's capacity to maintain ecological integrity despite some inherent instability. Geomorphic indices can serve as effective proxies for biological indices in highly disturbed systems. Yet, this may not be the case in less disturbed systems, where geomorphic indices cannot differentiate channel adjustments that impact biota from those that do not. Dynamically stable streams can include both stable and unstable reaches locally as characterized by geomorphic methods and translating these results into restoration priorities may not be appropriate if interpretations are limited to the reach scale.  相似文献   

8.
There are numerous demands for the limited water supplies in the Rocky Mountain (USA) region, and controversies surrounding instream flows abound. A specific problem involves water diversions (i.e., small dams that shunt water out of stream channels) during the summer irrigation season. We developed an approach to assess the effects of restoration of natural or less-than-natural summer flows on trout that accounts for variation in habitat over long segments of low-gradient, alluvial-valley streams. The approach has utility for managers because it can be conducted with hydologic data, aerial photographs, topographic maps, and a spreadsheet without extensive fieldwork. We applied the approach by assessing the effects of different summer flows on abundance of brown trout (Salmo trutta) in several streams annually dewatered in the Salt River Valley of western Wyoming. The assessment approach can be calibrated for other trout species and areas of the Rocky Mountain region.  相似文献   

9.
10.
Densmore, Roseann V. and Kenneth F. Karle, 2009. Flood Effects on an Alaskan Stream Restoration Project: The Value of Long‐Term Monitoring. Journal of the American Water Resources Association (JAWRA) 45(6):1424‐1433. Abstract: On a nationwide basis, few stream restoration projects have long‐term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long‐term and event‐based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long‐term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross‐sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25‐year flood on the stream and floodplain geometry and riparian vegetation. The long‐term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.  相似文献   

11.
Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.  相似文献   

12.
Species-rich semi-natural grasslands have rapidly declined and become fragmented in Northern Europe due to ceased traditional agricultural practices and animal husbandry. Restoration actions have been introduced in many places to improve the habitat conditions and increase the area to prevent any further losses of their ecological values. However, given the limited resources and long time span needed for successful restoration, it is essential to target activities on sites having a suitable initial state and where the effects of restoration are most beneficial for the habitat network. In this paper we present a conceptual framework for evaluating the restoration potential of partially overgrown and selectively managed semi-natural grasslands in a moderately transformed agricultural environment in south-western Finland. On the basis of the spatio-temporal landscape trajectory analysis, we construct potential restoration scenarios based on expected semi-natural grassland characteristics that are derived from land productivity, detected grassland continuum, and date of overgrowth. These scenarios are evaluated using landscape metrics, their feasibility is discussed and the effects of potential restoration are compared to the present extent of open semi-natural grasslands. Our results show that landscape trajectory analysis and scenario construction can be valuable tools for the restoration planning of semi-natural grasslands with limited resources. The approach should therefore be considered as an essential tool to find the most optimal restoration sites and to pre-evaluate the effects.  相似文献   

13.
《Local Environment》2007,12(2):111-128
Stream restoration projects are discussed in the context of their larger social purposes. Using a political ecology framework (including some of its European threads), the author explores how stream restoration initiatives have been carried out to date in the US and offers some preliminary reflections on how they could do more to advance environmental equity goals. Several aspects of how the endeavour is being carried out may inhibit progressive change, and they include: the metrics used to evaluate potential projects; the technical and managerialist construction of the problem definition; the understanding of what constitutes 'urban;' and the organizational aspects of stream restoration projects. While many stream restoration projects have made important contributions to their communities, a lack of comprehensive databases undermines full programme evaluation. The author concludes that both material and rhetorical dimensions of the stream restoration endeavour may be undermining the larger goals.  相似文献   

14.
Creating False Images: Stream Restoration in an Urban Setting   总被引:1,自引:0,他引:1  
Stream restoration has become a multibillion dollar business with mixed results as to its efficacy. This case study utilizes pre‐ and post‐monitoring data from restoration projects on an urban stream to assess how well stream conditions, publicly stated project goals, and project implementation align. Our research confirms previous studies showing little communication among academic researchers and restoration practitioners as well as provides further evidence that restoration efforts tend to focus on small‐scale, specific sites without considering broader land use patterns. This study advances our understanding of restoration by documenting that although improving ecological conditions is a stated goal for restoration projects, the implemented measures are not always focused on those issues that are the most ecologically salient. What these projects have accomplished is to protect the built environment and promote positive public perception. We argue that these disconnects among publicized goals for restoration, the implemented features, and actual stream conditions may create a false image of what an ecologically stable stream looks like and therefore perpetuate a false sense of optimism about the feasibility of restoring urban streams.  相似文献   

15.
Non-structural streambank stabilization, or bioengineering, is a common stream restoration practice used to slow streambank erosion, but its ecological effects have rarely been assessed. We surveyed bank habitat and sampled bank macroinvertebrates at four bioengineered sites, an unrestored site, and a comparatively less-impacted reference site in the urban Peachtree-Nancy Creek catchment in Atlanta, GA, USA. The amount of organic bank habitat (wood and roots) was much higher at the reference site and three of the bioengineered sites than at the unrestored site or the other bioengineered site, where a very different bioengineering technique was used (“joint planting”). At all sites, we saw a high abundance of pollution-tolerant taxa, especially chironomids and oligochaetes, and a low richness and diversity of the bank macroinvertebrate community. Total biomass, insect biomass, and non-chironomid insect biomass were highest at the reference site and two of the bioengineered sites (p < 0.05). Higher biomass and abundance were found on organic habitats (wood and roots) versus inorganic habitats (mud, sand, and rock) across all sites. Percent organic bank habitat at each site proved to be strongly positively correlated with many factors, including taxon richness, total biomass, and shredder biomass. These results suggest that bioengineered bank stabilization can have positive effects on bank habitat and macroinvertebrate communities in urban streams, but it cannot completely mitigate the impacts of urbanization.  相似文献   

16.
ABSTRACT: The Riverine Community Habitat Assessment and Restoration Concept (RCHARC) was developed to integrate habitat enhancement into the stream restoration process. RCHARC assumes that aquatic habitat quality is closely related to hydraulic diversity based upon a “comparison standard” reach approach to stream restoration. A Beta test was performed by applying the RCHARC process to Rapid Creek in Rapid City, South Dakota. Standard and restored stream reaches were selected and data were collected. A comparison of field data and velocity-depth distributions indicated that the restored stream closely replicated the standard reach. The RCHARC methodology has the potential to assess habitat quality for planned comparison reaches and indicate the level of success resulting from restoration.  相似文献   

17.
The effect of dairy farming on water quality in New Zealand streams has been identified as an important environmental issue. Stream fencing, to keep cattle out of streams, is seen as a way to improve water quality. Fencing ensures that cattle cannot defecate in the stream, prevents bank erosion, and protects the aquatic habitat. Stream fencing targets have been set by the dairy industry. In this paper the results of a study to identify the factors influencing dairy farmers' decisions to adopt stream fencing are outlined. Qualitative methods were used to gather data from 30 dairy farmers in four New Zealand catchments. Results suggest that farm contextual factors influenced farmers' decision making when considering stream fencing. Farmers were classified into four segments based on their reasons for investing in stream fencing. These reasons were fencing boundaries, fencing for stock control, fencing to protect animal health, and fencing because of pressure to conform to local government guidelines or industry codes of practice. This suggests that adoption may be slow in the absence of on-farm benefits, that promotion of stream fencing needs to be strongly linked to on-farm benefits, and that regulation could play a role in ensuring greater adoption of stream fencing.  相似文献   

18.
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

19.
Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1–2 years before rehabilitation, 3–4 years after rehabilitation, and 10–11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.  相似文献   

20.
Best management practices (BMPs) have been developed to address soil loss and the resulting sedimentation of streams, but information is lacking regarding their benefits to stream biota. We compared instream physical habitat and invertebrate and fish assemblages from farms with BMP to those from farms with conventional agricultural practices within the Whitewater River watershed of southeastern Minnesota, USA, in 1996 and 1997. Invertebrate assemblages were assessed using the US EPA's rapid bioassessment protocol (RBP), and fish assemblages were assessed with two indices of biotic integrity (IBIs). Sites were classified by upland land use (BMP or conventional practices) and riparian management (grass, grazed, or wooded buffer). Physical habitat characteristics differed across buffer types, but not upland land use, using an analysis of covariance, with buffer width and stream as covariates. Percent fines and embeddedness were negatively correlated with buffer width. Stream sites along grass buffers generally had significantly lower percent fines, embeddedness, and exposed streambank soil, but higher percent cover and overhanging vegetation when compared with sites that had grazed or wooded buffers. RBP and IBI scores were not significantly different across upland land use or riparian buffer type but did show several correlations with instream physical habitat variables. RBP and IBI scores were both negatively correlated with percent fines and embeddedness and positively correlated with width-to-depth ratio. The lack of difference in RBP or IBI scores across buffer types suggests that biotic indicators may not respond to local changes, that other factors not measured may be important, or that greater improvements in watershed condition are necessary for changes in biota to be apparent. Grass buffers may be a viable alternative for riparian management, especially if sedimentation and streambank stability are primary concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号