首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
基于OMI数据研究中国对流层甲醛时空分布特征及变化趋势   总被引:2,自引:0,他引:2  
利用OMI卫星遥感反演的甲醛柱浓度数据,结合MEGAN模式和MEIC排放清单研究了2005—2016年中国对流层甲醛柱浓度的时空特征和长期变化趋势,以及甲醛柱浓度的季节差异与排放源和地面风场的关系.结果表明,中国对流层甲醛柱浓度呈西低东高的空间分布特征,且高值区域主要分布在华北平原、长江三角洲、珠江三角洲及四川盆地等人为源排放较高的中东部地区.中国甲醛柱浓度存在明显的季节差异,表现为夏季秋季春季冬季.天然源VOCs和人为源VOCs排放均对甲醛柱浓度季节变化具有重要影响,光化学反应与气象条件在其中所起到的作用也不可忽略.生物源排放变化对甲醛年际变化趋势的影响不显著,中国东部地区甲醛柱浓度呈上升趋势主要是由于气候变率和人为因素的共同影响所致.  相似文献   

2.
基于OMI卫星遥感反演的对流层甲醛柱浓度资料,对2005—2016年四川盆地对流层甲醛柱浓度的时空分布特征及其影响因素进行了分析.结果表明,12年间甲醛柱浓度年际变化总体呈上升趋势,年均增长率为1.17%.12年间甲醛柱浓度具有波动性,年均最低值和年均最高值分别出现于2005年和2012年.2005—2008年四川盆地甲醛柱浓度相对较低;2011年对流层甲醛柱浓度达到最大且高值区范围最大,2012年后浓度逐渐降低.四川盆地甲醛柱浓度季节变化表现为夏季春季秋季冬季.一年之中,月均甲醛柱浓度最小值基本出现在每年的11—12月,最大值则出现在6—8月.甲醛柱浓度空间分布的高值区主要分布在盆地内西南部的成都平原地区,低值区则多处于人为源排放较低的重庆东北部山区.能源消耗、生产总值及机动车保有量与对流层甲醛柱浓度具有显著的正相关关系.工业源、居民源和交通源排放对甲醛柱浓度具有重要贡献.四川盆地独特的地形及区域内风场对甲醛的扩散也有重要影响.  相似文献   

3.
山东省近10年对流层NO2柱浓度时空变化及影响因素   总被引:1,自引:0,他引:1  
利用OMI卫星对流层NO2柱浓度产品研究了近10年山东省NO2时空格局及影响因素,结果表明: 对流层NO2柱浓度波动较大,10年柱浓度年均值增幅为28.5%,其中2011年浓度最高;对流层NO2柱浓度空间变化显著,2005~2009年四、五级高值仅出现在经济发达的内陆城市, 2010~2012年四、五级高值范围显著扩大至中西部大范围地区,尤以2011年最为严重, 2013~2014年,四、五级高值范围呈逐步缩小趋势; 夏季丰富的降水对NO2具有显著湿沉降作用;山东省近10年地区生产总值不断攀升、机动车保有量大且增幅快、秸秆焚烧火点个数多,这些人为排放是对流层NO2柱浓度升高的主要影响因素.  相似文献   

4.
利用Williams等和Guenther等的模型估计中国地区NOx和VOC的自然源排放.所得清单显示土壤NOx排放总量(以N计)为225.75 Gg;植被VOC年排放总量(以C计)为13.23 Tg,其中异戊二烯、单萜烯、其它VOC分别为7.77、1.86、3.60 Tg;排放有明显季节变化和空间变化.运用中尺度气象模式MM5以及光化学模式Calgrid研究这些排放在不同季节对对流层化学的影响.结果表明,O3、NOx、HNO3和PAN的全国平均浓度在土壤NOx排放影响下分别增加15.3%、15.7%、25.5%和6.5%;在植被VOC排放影响下改变5.6%、-4.9%、-19.3%和142.3%;在两者综合影响下增加26.1%、8.8%、4.3%和177.9%;浓度变化在夏季明显强于其它季节.自然源对中国地区光化学污染物空间分布有不同程度的影响,这种影响同区域气象条件、源排放和NMHC/NOx比值等因素有关.NOx和VOC的自然源排放对光化学特性影响显著,在光化学模拟过程中不容忽视.  相似文献   

5.
利用OMI传感器反演获取的全球对流层NO2垂直柱浓度数据,分析了2006~2017年京津冀大气污染传输通道城市的对流层NO2垂直柱浓度时空变化。结果表明,通过线性拟合得出,OMI反演NO2垂直柱浓度与地面实测NO2浓度呈显著正相关;京津冀大气污染传输通道城市NO2柱浓度月均值变化具有周期性,最高值和最低值多出现在1月和7月;NO2柱浓度在季节变化上特征明显,表现为冬季最高,秋、春季次之,夏季最低。在年际变化上,NO2柱浓度主要表现为2006~2010年波动增长,2011~2013年基本持平,2014年后开始迅速下降;NO2垂直柱浓度空间分布,整体呈现出西北部低、中部和东部高的空间格局;季节空间分布与这12年均NO2柱浓度空间分布相似。  相似文献   

6.
近10年海南岛大气NO2的时空变化及污染物来源解析   总被引:4,自引:0,他引:4  
利用OMI卫星反演的NO2柱浓度数据,分析了近10年海南岛对流层NO2柱浓度(Tro NO2)和总NO2柱浓度(Tot NO2)的时空变化,同时结合地面风向、SO2排放资料,以及HYSPLIT模式等探究其大气污染物来源.结果表明,海南岛地区大气NO2呈北半部高于南半部、中部山区低于四周沿海的分布特征,其季节变化表现为冬季高、夏季低的特点,其中夏季浓度偏低和雨水的冲刷作用有关,而冬季浓度偏高与珠江三角洲地区的外源输送作用有密切联系.近10年海南岛大气NO2冬夏季有相反的变化趋势,冬季逐年下降,夏季则有弱的上升趋势.其原因可能是夏季大气污染物以本地排放为主,冬季外源输送起主要贡献作用.海口市Tro NO2与珠江三角洲地区的有利风向日数相关系数为0.84,通过了99%的信度检验.后向轨迹分析表明,2013年12月影响海口市的3条气流移动路径,均不同程度的经过珠江三角洲地区,进一步表明海南岛冬季大气污染物主要以珠江三角洲地区的外源输送为主.  相似文献   

7.
利用Aura卫星上OMI传感器反演获取的2013-2014年对流层NO2垂直柱浓度,探究了天津市对流层NO2垂直柱浓度的时空分布特征及其与NO2质量浓度的关系。结果表明,天津市对流层NO2柱浓度年均值为18.67×1015molec/cm2,在津冀地区处于中等浓度水平。NO2垂直柱浓度空间分布极不平衡,表现出中部地区浓度偏高、南北两部浓度偏低的空间分布格局;NO2垂直柱浓度在各月份呈现"V"分布,表现出冬季浓度最高,春季次之,夏季最低的特点。OMI卫星反演的NO2月均柱浓度分布趋势及其值域比率与自动站监测数据质量浓度基本一致,柱浓度与质量浓度相关系数为0.694 8,满足0.01显著性水平检验,可根据对流层NO2柱浓度来反演地面NO2质量浓度。  相似文献   

8.
搭载在EOS AURA卫星上的OMI探测器由于其较高时空分辨率在大气痕量气体(O3,NO2,SO2)探测中得到广泛应用.利用2010~2012年OMI NO2柱浓度数据产品重构了兰州市以及周边地区NO2柱浓度分布,分析了其时空变化特征,并利用西南风场下NO2空间分布特征采用拟合方法研究了NOx冬季排放通量以及寿命.研究表明,NO2柱浓度空间分布呈现以兰州市为中心,浓度向四周扩散的特征;兰州市NO2柱浓度的年变化特征为12月达到最大浓度,8月达到最小浓度;2010~2012年NO2寿命分别为10.6,9.9,9.1h,NOx冬季排放通量分别为175.3, 183.7,179.9mol/s.其排放通量与兰州环境公报提供的氮氧化物排放通量数量级之间具有较好的一致性,说明利用卫星数据估算兰州的NOx通量方法的有效性.  相似文献   

9.
文章利用OMI卫星全球对流层NO2垂直柱浓度Level3级产品数据,研究分析了河南省2006年-2015年大气对流层NO2垂直柱浓度时空变化规律.结果表明:河南省近10年大气对流层平均NO2柱浓度为15.38×1015 molec/cm2,远高于全国平均水平,但自2014年起出现了大幅回落;NO2柱浓度月均值具有对称性和周期性,最高值和最低值一般分别出现在1月和7月;NO2柱浓度的季节均值特征明显,具体表现为冬季>秋季>春季>夏季;河南省NO2柱浓度空间分布不均衡,自西南部至东北部逐渐增加,其中东北部为NO2浓度高值集中地区.  相似文献   

10.
利用OMI遥感数据研究中国区域大气NO_2   总被引:6,自引:4,他引:6  
肖钟湧  江洪  程苗苗 《环境科学学报》2011,31(10):2080-2090
利用臭氧观测仪(Ozone Monitoring Instrument,OMI)卫星遥感反演的NO2柱浓度数据,分析了自2004年以来中国地区对流层NO2柱浓度(TroNO2)和总NO2柱浓度(TotNO2)的时空特征及其影响的原因.中国区域平均TroNO2和TotNO2呈现上升的趋势,年平均分别增长了4.67%和2....  相似文献   

11.
利用SCIAMACHYENVISAT 2003—2009年月均观测数据,结合1∶4 000 000行政区划图,得到了近7 a来我国城市级别NO2柱浓度的时空分布和变化趋势,并采用Seasonal Mann-Kendall非参数检验方法对各城市的变化趋势进行了显著性分析. 结果表明:我国NO2分布东高西低,NO2柱浓度高值区主要分布在京津冀及环渤海区域、长江三角洲北部及广东省等地区. 近7 a来我国北部和中部地区的NO2增长趋势显著,NO2柱浓度平均值最高和增速最快的前20个城市主要分布在江苏、山东和安徽等省的二级城市郊县和小城市. 与统计年鉴工业废气排放数据的比较表明,工业废气排放与NO2柱浓度及其时空分布具有较好的一致性. 这种新的NO2污染格局应该引起重视并采取有针对性的污染监管措施.   相似文献   

12.
中国机动车排放清单的建立   总被引:22,自引:10,他引:12  
宋翔宇  谢绍东 《环境科学》2006,27(6):1041-1045
以中国2002年各省统计年鉴中关于机动车及道路信息的数据为基础,并根据COPERTⅢ模型计算出的2002年中国各省区各种机动车类型在城区、郊区和高速公路3种行驶工况下的排放因子,应用GIS技术建立了40km×40km的高空间分辨率的中国机动车排放源清单.结果表明,2002年中国机动车排放CO、NOx、NMVOC和PM10的排放总量分别为2 815×104、305×104、461×104和111×104t,主要来源于摩托车和汽油小客车的排放.污染物排放量的空间分布显示出其排放集中于经济发达地区,10.8%、2.2%、9.7%和5.3%的国土面积分别排放了84%的CO、55%的NMVOC、48%的NOx和48%的颗粒物,并呈现出东部高于西部、沿海高于内地的趋势,其中长江三角洲、珠江三角洲和京津地区的排放相对较强.  相似文献   

13.
中国NO2的季节分布及成因分析   总被引:3,自引:1,他引:2       下载免费PDF全文
利用OMI卫星观测的对流层NO2柱浓度和113个重点城市地面ρ(NO2)监测数据,结合753个监测站降水资料以及中国气象局气象信息综合分析处理系统(MICAPS)气压场数据,研究了中国NO2的季节分布特征及其影响因素.结果表明:卫星遥感数据和地面监测数据同步显示了中国NO2浓度冬季峰值、夏季谷值的季节分布特征;月降水量与地面监测的ρ(NO2)呈负相关,相关系数为0.71.气压场平均结果表明,边界层气压场的特征是影响NO2浓度季节分布的另一个主要因素.   相似文献   

14.
利用OMI卫星反演数据分析了2005—2014年中国中东部地区对流层臭氧变化趋势.结果表明,近10年来对流层臭氧总柱浓度混合比例较稳定,但近地面浓度明显增加,特别是在冬季臭氧上升速度达40%.同时分析了京津冀、长三角、珠三角地区10个重点城市的臭氧数据,发现京津冀地区的臭氧涨幅超过其他两个地区,其中,长三角地区臭氧混合比例最高,而珠三角地区相对较稳定.利用臭氧激光雷达和地面臭氧监测数据对卫星反演结果进行比较显示了较好的一致性,证明使用卫星反演的数据来研究长时间范围内近地层的臭氧变化是一种可行的方法.  相似文献   

15.
为了探明近年来中国典型城市群(京津冀城市群、长三角城市群和珠三角城市群)臭氧(O3)污染的发生规律,利用2005—2020年OMI-MLS (臭氧监测仪-微波临边探测器)对流层O3柱总量探测数据以及2015—2020年地面O3浓度监测数据分析我国三大城市群O3的时空分布特征及其演变趋势,结果表明:①对流层O3柱总量月峰值和年均值均呈京津冀城市群>长三角城市群>珠三角城市群的特征,京津冀和长三角城市群对流层O3柱总量均在夏季〔分别为50.0和44.4 DU (dobson unit)〕最高,而珠三角城市群在春季(42.2 DU)最高. ②三大城市群对流层O3柱总量在空间分布上具有不同的特征,京津冀城市群对流层O3柱总量呈东南高于西北的特征,长三角城市群对流层O3柱总量随纬度升高而增大,珠三角城市群对流层O3柱总量南北局地差异较小;海拔对对流层O3柱总量的空间分布有一定影响,海拔越高,对流层O3柱总量越低. ③京津冀、长三角和珠三角城市群对流层O3柱总量均呈逐年显著升高的趋势,年均增长量分别为0.25、0.28和0.27 DU,其中,京津冀城市群在对流层O3柱总量较低的秋冬季年均增长(0.29 DU)最快,而长三角和珠三角城市群分别在对流层O3柱总量最高的夏季和春季增长最快,均为0.39 DU. ④卫星探测的对流层O3柱总量与地面监测的O3日最大8 h滑动平均浓度(简称“O3-8 h浓度”)在京津冀和长三角城市群相关性明显,而在珠三角城市群相关性较差. ⑤O3-8 h浓度呈京津冀城市群>长三角城市群>珠三角城市群的特征,其中,京津冀城市群O3-8 h浓度在2018年(110.9 μg/m3)最高,空间上由2016年之前的北高南低转变为南高北低,多数城市O3污染较重且达标率较低;长三角城市群2017年O3-8 h浓度(106.7 μg/m3)最高,2016年起O3-8 h高浓度中心由东北逐渐向西部内陆迁移,沿海城市达标率增加;珠三角城市群O3污染程度最轻,达标城市较多,但O3-8 h浓度呈逐年上升趋势,并在2019年达最高值(100.4 μg/m3),且中心城市上升速率远大于外围城市. 研究显示,中国三大城市群对流层O3柱总量和O3-8 h浓度的时空分布特征存在显著差异,造成差异的因素也不同.   相似文献   

16.
中国西部人为源NO2污染的时空分布及影响因素研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用臭氧监测仪卫星遥感反演获得对流层NO_2柱浓度数据,分析了2005—2016年中国西部地区NO_2污染的时空演变特征及影响因素.首先,根据NO_2污染的季节特性,剔除了自然源NO_2后得到人为源NO_2柱浓度信息;然后,利用小波变换分解方法对西部地区NO_2柱浓度的长期趋势和季节特性进行提取,并对比了东西部的NO_2增长情况;最后,结合经济社会数据分析了西部各省NO_2污染的主要驱动因素.结果发现,西部地区的NO_2浓度在2005—2012年期间呈快速增长趋势,西北各省份的增速均超过了10%a~(-1).然而,2012年之后,西部各省的NO_2浓度开始下降.结合"十二五"计划中的各省氮氧化物减排目标,发现大多数西部省份都较好地完成了减排任务.此外,煤炭消费是西部各省NO_2污染的最主要因素.然而,对于云南和四川而言,虽然水电发展替代了部分火电,使得煤炭消费增速减缓,但交通排放成为这两个省份NO_2污染的最主要驱动因素.西部地区是国家"一带一路"新战略的重要区域,本研究结果将为政府制定有效的控制排放政策,以及促进西部区域可持续发展提供重要的科学参考.  相似文献   

17.
通过OMI卫星数据分析了2005~2016年长江三角洲对流层甲醛柱浓度的时空变化规律.同时结合2008年和2010年各部门VOCs人为源排放量,利用BP神经网络和RBFN神经网络模型对对流层甲醛柱浓度进行了县域尺度上的回归模拟和各部门排放量贡献度分析.结果表明:长三角城市群对流层甲醛柱浓度在2005~2010年存在着增加趋势,2011~2016年甲醛浓度有下降的趋势.高值区域分布在皖北苏北、上海及其附近,低值区域分布在浙西南一带.人为源排放使得经济发达地区的甲醛柱浓度显著增高.工业源在长三角的分布较为广泛,电力源分布稀疏且VOC排放量远小于工业源排放量,居民源的VOC排放量介于工业源和电力源之间,有明显的南北差异.交通源主要集中在苏南、浙北和上海附近,少部分沿交通线条状分布.机器学习算法可以较好地利用人为源排放数据对甲醛柱浓度进行模拟.神经网络的拟合精度可以达到0.6~0.8,比线性回归的拟合精度超出0.3~0.4.模型变量重要性计算显示各部门中居民源对甲醛柱浓度的贡献程度最高.研究对流层甲醛柱浓度的长期时空变化及其影响因素有利于深入研究臭氧污染,同时也为大气治理和政策制定提供了科学依据.  相似文献   

18.
为识别我国沿海地区的大气污染分布特征,基于2015—2016年我国沿海12个省(自治区、直辖市)的115个地级以上城市ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(O3)、ρ(CO)和ρ(SO2)监测数据,在分析其时空分布特征的基础上,结合主成分分析和AIC(改进赤池信息准则)开展我国沿海地区大气污染聚类分析研究.结果表明:我国沿海地区颗粒物污染严重,其中70%和54%的城市未达到GB 3095—2012《环境空气质量标准》中ρ(PM2.5)和ρ(PM10)二级标准,ρ(PM2.5)在空间上以浙江省金华市为界呈“北高南低”、金华市以北地区“西高东低”的分布特征;环渤海带及长三角地区ρ(O3)处于相对较高水平,山东省中部ρ(SO2)突出,最高值达71.3 μg/m3.根据6种大气污染物监测值,可将115个地级以上城市聚为3类:类Ⅰ包括河北省南部和山东省西部在内的21个城市,空间分布连续且相对集中,受本地源和扩散条件的影响,各项大气污染物质量浓度均处于较高水平;类Ⅱ包括辽宁省、山东省东部和长三角等地区的42个城市,各项大气污染物质量浓度较类Ⅰ有所降低,ρ(PM2.5)降低(比类Ⅰ低34.2%)明显,更多表现为受工业和散煤燃烧影响的SO2污染,和受海运船舶和陆路交通源影响的NO2污染;类Ⅲ包括福建省、广东省和广西壮族自治区沿海一带的52个城市,大气污染物质量浓度相对较低,空气质量较优,受季风和外来源影响的秋季O3污染特征明显.3类城市ρ(O3)平均值相近但季节性变化有所差异,类Ⅰ和类Ⅱ ρ(O3)峰值均出现在6月,类Ⅰ ρ(O3)季节性差异更为显著,类Ⅲ峰值出现在10月,全年变幅相对较小.研究显示,我国沿海地区山东省西部、江苏省北部与京津冀地区南部呈较为相似的污染特征,广西壮族自治区柳州市与周边城市呈不同聚类特征,ρ(PM)和ρ(SO2)相对较高,为大气污染热点.   相似文献   

19.
利用臭氧观测仪(OMI)卫星遥感反演的大气边界层(PBL)SO2柱含量(PBL SO2)数据分析了自2005年以来中国PBL SO2柱含量数据的空间分布特征、变化趋势及其影响的原因.从长时间尺度上,PBL SO2柱含量呈现明显的下降趋势.2005年中国区域年平均PBL SO2柱含量为0.317DU,2016年为0.276DU,减少了0.041DU,大约为13.2%.SO2柱含量呈现明显的周期变化特征.冬季浓度较高,夏季较低,最小值和最大值分别出现在7和12月,分别为0.246和0.404DU.小波分析显示SO2的变化在10个月的尺度水平上存在明显的主振荡周期,在40个月的尺度水平上存在明显的次周期变化.中国区域SO2污染严重的高值区主要出现在京津冀鲁环渤海地区、关中平原(山西省和陕西省)、河南省大部分地区、四川盆地、长江三角洲地区和珠江三角洲.最大的SO2柱含量值可达1.1DU以上.京津冀鲁环渤海地区的高值区已经延伸到长江三角洲地区,有向南延伸和珠江三角洲连在一起的趋势.由于地形和天气特征的影响,四川盆地地区SO2出现次高值区.在青藏高原和西北地区,SO2浓度较低,呈现背景值特征,多年平均的SO2约在0.05DU的水平.中国区域SO2变化趋势在空间分布上存在明显的区域差异,变化的范围在-0.70~0.15DU之间.SO2出现逐渐减少的地区主要是在高值区,如京津冀鲁环勃海地区、关中平原、四川盆地,长江中下游和珠江三角洲.减幅最大的是四川盆地和珠江三角洲,大约减少了61%.四川盆地2005~2016年约减少了0.55DU;珠江三角洲约减少了0.45DU.出现增长的地区主要是西部和北部地区,以及东南沿海除珠三角外的大部分区域,最大增长大约为0.15DU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号