首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Abstract: A price on carbon is expected to generate demand for carbon offset schemes. This demand could drive investment in tree‐based monocultures that provide higher carbon yields than diverse plantings of native tree and shrub species, which sequester less carbon but provide greater variation in vegetation structure and composition. Economic instruments such as species conservation banking, the creation and trading of credits that represent biological‐diversity values on private land, could close the financial gap between monocultures and more diverse plantings by providing payments to individuals who plant diverse species in locations that contribute to conservation and restoration goals. We studied a highly modified agricultural system in southern Australia that is typical of many temperate agriculture zones globally (i.e., has a high proportion of endangered species, high levels of habitat fragmentation, and presence of non‐native species). We quantified the economic returns from agriculture and from carbon plantings (monoculture and mixed tree and shrubs) under six carbon‐price scenarios. We also identified high‐priority locations for restoration of cleared landscapes with mixed tree and shrub carbon plantings. Depending on the price of carbon, direct annual payments to landowners of AU$7/ha/year to $125/ha/year (US$6–120/ha/year) may be sufficient to augment economic returns from a carbon market and encourage tree plantings that contribute more to the restoration of natural systems and endangered species habitats than monocultures. Thus, areas of high priority for conservation and restoration may be restored relatively cheaply in the presence of a carbon market. Overall, however, less carbon is sequestered by mixed native tree and shrub plantings.  相似文献   

2.
Prescribed burning is increasingly being used in the deciduous forests of eastern North America. Recent work suggests that historical fire frequency has been overestimated east of the prairie–woodland transition zone, and its introduction could potentially reduce forest herb and shrub diversity. Fire‐history recreations derived from sedimentary charcoal, tree fire scars, and estimates of Native American burning suggest point‐return times ranging from 5–10 years to centuries and millennia. Actual return times were probably longer because such records suffer from selective sampling, small sample sizes, and a probable publication bias toward frequent fire. Archeological evidence shows the environmental effect of fire could be severe in the immediate neighborhood of a Native American village. Population density appears to have been low through most of the Holocene, however, and villages were strongly clustered at a regional scale. Thus, it appears that the majority of forests of the eastern United States were little affected by burning before European settlement. Use of prescribed burning assumes that most forest species are tolerant of fire and that burning will have only a minimal effect on diversity. However, common adaptations such as serotiny, epicormic sprouting, resprouting from rhizomes, and smoke‐cued germination are unknown across most of the deciduous region. Experimental studies of burning show vegetation responses similar to other forms of disturbance that remove stems and litter and do not necessarily imply adaptation to fire. The general lack of adaptation could potentially cause a reduction in diversity if burning were introduced. These observations suggest a need for a fine‐grained examination of fire history with systematic sampling in which all subregions, landscape positions, and community types are represented. Responses to burning need to be examined in noncommercial and nonwoody species in rigorous manipulative experiments. Until such information is available, it seems prudent to limit the use of prescribed burning east of the prairie–woodland transition zone. Reevaluación del Uso de Fuego como Herramienta de Manejo en Bosques Deciduos de América del Norte  相似文献   

3.
4.
Abstract: The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long‐term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry‐forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks—livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb–shrub richness in the livestock‐free block, but had no effect on that of tree seedlings in either livestock block. Tree‐seedling and herb–shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana‐free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey‐dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long‐term protection of these forests as viable tiger habitats.  相似文献   

5.
6.
Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat‐specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species.  相似文献   

7.
The concept of shifting baselines in conservation science implies advocacy for the use of historical knowledge to inform these baselines but does not address the feasibility of restoring sites to those baselines. In many regions, conservation feasibility varies among sites due to differences in resource availability, statutory power, and land‐owner participation. We used zooarchaeological records to identify a historical baseline of the freshwater mussel community's composition before Euro‐American influence at a river‐reach scale (i.e., a kilometer stretch of river that is abiotically similar) in the Leon River of central Texas (U.S.A.). We evaluated how the community reference position and the feasibility of conservation might enable identification of sites where conservation actions would preserve historically representative communities and be likely to succeed. We devised a conceptual model that incorporated community information and landscape factors to link the best conservation areas to potential cost and conservation benefits. Using fuzzy ordination, we identified modern mussel beds that were most like the historical baseline. We then quantified housing density and land use near each river reach identified to estimate feasibility of habitat restoration. Using our conceptual framework, we identified reaches of high conservation value (i.e., contain the best mussel beds) and where restoration actions would be most likely to succeed. Reaches above Lake Belton were most similar in species composition and relative abundance to zooarchaeological sites. A subset of these mussel beds occurred in locations where conservation actions appeared most feasible. Our results show how to use zooarchaeological data (biodiversity data often readily available) and estimates of conservation feasibility to inform conservation priorities at a local spatial scale.  相似文献   

8.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   

9.
Understanding restoration effectiveness is often impaired by a lack of high‐quality, long‐term monitoring data and, to date, few researchers have used species’ trait information to gain insight into the processes that drive the reaction of fish communities to restoration. We examined fish‐community responses with a highly resolved data set from 21 consecutive years of electrofishing (4 years prerestoration and 17 years postrestoration) at multiple restored and unrestored reaches from a river restoration project on the Lippe River, Germany. Fish abundance peaked in the third year after the restoration; abundance was 6 times higher than before the restoration. After 5–7 years, species richness and abundance stabilized at 2 and 3.5 times higher levels relative to the prerestoration level, respectively. However, interannual variability of species richness and abundance remained considerable, illustrating the challenge of reliably assessing restoration outcomes based on data from individual samplings, especially in the first years following restoration. Life‐history and reproduction‐related traits best explained differences in species’ responses to restoration. Opportunistic short‐lived species with early female maturity and multiple spawning runs per year exhibited the strongest increase in abundance, which reflected their ability to rapidly colonize new habitats. These often small‐bodied and fusiform fishes typically live in dynamic and ephemeral instream and floodplain areas that river‐habitat restorations often aim to create, and in this case their increases in abundance indicated successful restoration. Our results suggest that a greater consideration of species’ traits may enhance the causal understanding of community processes and the coupling of restoration to functional ecology. Trait‐based assessments of restoration outcomes would furthermore allow for easier transfer of knowledge across biogeographic borders than studies based on taxonomy.  相似文献   

10.
Abstract: To understand how a highly contentious policy process influenced a major conservation effort, I examined the origins, compromises, and outcomes of the Alaska National Interest Lands Conservation Act of 1980 (ANILCA) for the Tongass National Forest. Tongass wilderness designation was among the most controversial issues in the ANILCA debate, and it faced strong opposition from influential lawmakers, land managers, and Alaska residents. To investigate the influence of this opposition on Tongass conservation outcomes, I conducted a gap analysis of Tongass reserves and a policy analysis of the ANILCA debate and traced the influence of specific interests through the amendments, negotiations, and resulting compromises needed to enact ANILCA. Overall, I found that Tongass reserves comprise a broadly representative cross‐section of ecosystems and species habitats in southeastern Alaska. Redrawn reserve boundaries, industry subsidies, and special access regulations reflected compromises to minimize the impact of wilderness conservation on mining, timber, and local stakeholder interests, respectively. Fragmentation of the Admiralty Island National Monument—the most ecologically valuable and politically controversial reserve—resulted from compromises with Alaskan Native (indigenous peoples of Alaska) corporations and timber interests. Despite language to accommodate “reasonable access” to wilderness reserves, ongoing access limitations highlight the concerns of Alaska residents that opposed ANILCA several decades ago. More broadly, the Tongass case suggests that early and ambitious conservation action may offset strong political opposition; compromises needed to establish key reserves often exacerbate development impacts in unprotected areas; and efforts to minimize social conflicts are needed to safeguard the long‐term viability of conservation measures.  相似文献   

11.
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum‐type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat‐forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. Definición de Hábitats Críticos para Peces Arrecifales Amenazados y Endémicos Mediante un Método Multivariado  相似文献   

12.
Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic‐based captive‐breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive‐breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray–Darling Basin in Australia. These two populations were rescued during Australia's recent decade‐long Millennium Drought, when their persistence became entirely dependent on captive‐breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity—despite skewed brooder contribution to offspring—was achieved through carefully managed genetic‐based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive‐bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic‐based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction programs, and is expected to improve with the use of next‐generation sequencing technology.  相似文献   

13.
Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost‐effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape‐scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species‐rich plantings. We investigated whether it is possible to apply a complementarity‐based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity‐based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species‐richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species‐richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and landscape context lead to considerably better outcomes than conventional restoration objectives of site‐scale species richness and are crucial for allocating restoration investment wisely to reach desired conservation goals.  相似文献   

14.
Abstract: One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. We used maximum‐entropy niche modeling to run distribution models for 222 amphibian and 371 reptile species (49% endemics and 27% threatened) for which we had 34,619 single geographic records. The planning region is in southeastern Mexico, is 20% of the country's area, includes 80% of the country's herpetofauna, and lacks an adequate protected‐area system. We used probabilistic data to build distribution models of herpetofauna for use in prioritizing conservation areas for three target groups (all species and threatened and endemic species). The accuracy of species‐distribution models was better for endemic and threatened species than it was for all species. Forty‐seven percent of the region has been deforested and additional conservation areas with 13.7% to 88.6% more native vegetation (76% to 96% of the areas are outside the current protected‐area system) are needed. There was overlap in 26 of the main selected areas in the conservation‐area network prioritized to preserve the target groups, and for all three target groups the proportion of vegetation types needed for their conservation was constant: 30% pine and oak forests, 22% tropical evergreen forest, 17% low deciduous forest, and 8% montane cloud forests. The fact that different groups of species require the same proportion of habitat types suggests that the pine and oak forests support the highest proportion of endemic and threatened species and should therefore be given priority over other types of vegetation for inclusion in the protected areas of southeastern Mexico.  相似文献   

15.
Effects of Restoring Oak Savannas on Bird Communities and Populations   总被引:2,自引:0,他引:2  
Abstract:  Efforts to restore and maintain oak savannas in North America, with emphasis on the use of prescribed fire, have become common. Little is known, however, about how restoration affects animal populations, especially those of birds. I compared the breeding densities, community structure, and reproductive success of birds in oak savannas maintained by prescribed fire (12 sites) with those in closed-canopy forests (13 sites). All sampling was conducted in Illinois (U.S.A.). Of the 31 bird species analyzed, 12 were more common in savannas, 14 were not affected by habitat structure, and 5 were more common in forest habitat. The species favored by disturbance and restoration included Northern Bobwhites ( Colinus virginianus ), Mourning Doves (  Zenaida macroura ), Red-headed Woodpeckers (  Melanerpes erythrocephalus ), Indigo Buntings (  Passerina cyanea ), and Baltimore Orioles ( Icterus galbula ). Those more common in closed-canopy forest included Ovenbirds ( Seiurus aurocapilla ) and Wood Thrushes (  Hylocichla mustelina ). Few species were unique to one type of habitat, but overall avian community structure in oak savannas and closed-canopy forests was generally distinctive. Estimates of nesting success (derived from 785 nests) revealed that 6 of the 13 species considered experienced greater productivity in the savanna habitat. Rates of brood parasitism were unaffected by restoration and habitat structure. Within savannas, tract size had little effect on breeding abundances and reproductive success. My results illustrate that restoration techniques can significantly affect the ecology of constituent animal populations and communities and have key implications regarding avian conservation and the management of forest habitat in fragmented landscapes. Small patches of forest habitat that regularly function as population sinks may offer far better prospects for birds if they are subjected to disturbance and ecosystem restoration.  相似文献   

16.
The taxonomic uniqueness of island populations is often uncertain which hinders effective prioritization for conservation. The Christmas Island shrew (Crocidura attenuata trichura) is the only member of the highly speciose eutherian family Soricidae recorded from Australia. It is currently classified as a subspecies of the Asian gray or long‐tailed shrew (C. attenuata), although it was originally described as a subspecies of the southeast Asian white‐toothed shrew (C. fuliginosa). The Christmas Island shrew is currently listed as endangered and has not been recorded in the wild since 1984–1985, when 2 specimens were collected after an 80‐year absence. We aimed to obtain DNA sequence data for cytochrome b (cytb) from Christmas Island shrew museum specimens to determine their taxonomic affinities and to confirm the identity of the 1980s specimens. The Cytb sequences from 5, 1898 specimens and a 1985 specimen were identical. In addition, the Christmas Island shrew cytb sequence was divergent at the species level from all available Crocidura cytb sequences. Rather than a population of a widespread species, current evidence suggests the Christmas Island shrew is a critically endangered endemic species, C. trichura, and a high priority for conservation. As the decisions typically required to save declining species can be delayed or deferred if the taxonomic status of the population in question is uncertain, it is hoped that the history of the Christmas Island shrew will encourage the clarification of taxonomy to be seen as an important first step in initiating informed and effective conservation action.  相似文献   

17.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

18.
Abstract: Many of the skills and resources associated with botanic gardens and arboreta, including plant taxonomy, horticulture, and seed bank management, are fundamental to ecological restoration efforts, yet few of the world's botanic gardens are involved in the science or practice of restoration. Thus, we examined the potential role of botanic gardens in these emerging fields. We believe a reorientation of certain existing institutional strengths, such as plant‐based research and knowledge transfer, would enable many more botanic gardens worldwide to provide effective science‐based support to restoration efforts. We recommend botanic gardens widen research to include ecosystems as well as species, increase involvement in practical restoration projects and training practitioners, and serve as information hubs for data archiving and exchange.  相似文献   

19.
There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self‐organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1–59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species’ origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal‐dispersed seeds were from near‐basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1–25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near‐basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old‐growth forest is crucially important for sustaining tropical biodiversity.  相似文献   

20.
Controlling invasive species is critical for conservation but can have unintended consequences for native species and divert resources away from other efforts. This dilemma occurs on a grand scale in the North American Great Lakes, where dams and culverts block tributary access to habitat of desirable fish species and are a lynchpin of long‐standing efforts to limit ecological damage inflicted by the invasive, parasitic sea lamprey (Petromyzon marinus). Habitat restoration and sea‐lamprey control create conflicting goals for managing aging infrastructure. We used optimization to minimize opportunity costs of habitat gains for 37 desirable migratory fishes that arose from restricting sea lamprey access (0–25% increase) when selecting barriers for removal under a limited budget (US$1–105 million). Imposing limits on sea lamprey habitat reduced gains in tributary access for desirable species by 15–50% relative to an unconstrained scenario. Additional investment to offset the effect of limiting sea‐lamprey access resulted in high opportunity costs for 30 of 37 species (e.g., an additional US$20–80 million for lake sturgeon [Acipenser fulvescens]) and often required ≥5% increase in sea‐lamprey access to identify barrier‐removal solutions adhering to the budget and limiting access. Narrowly distributed species exhibited the highest opportunity costs but benefited more at less cost when small increases in sea‐lamprey access were allowed. Our results illustrate the value of optimization in limiting opportunity costs when balancing invasion control against restoration benefits for diverse desirable species. Such trade‐off analyses are essential to the restoration of connectivity within fragmented rivers without unleashing invaders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号