首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Jeon JH  Kim SD  Lim TH  Lee DH 《Chemosphere》2005,60(8):1162-1168
The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.  相似文献   

2.
Y S Shen  Y Ku 《Chemosphere》2002,46(1):101-107
The decomposition of gas-phase trichloroethene (TCE) in air streams by direct photolysis, the UV/TiO2 and UV/O3 processes was studied. The experiments were carried out under various UV light intensities and wavelengths, ozone dosages, and initial concentrations of TCE to investigate and compare the removal efficiency of the pollutant. For UV/TiO2 process, the individual contribution to the decomposition of TCE by direct photolysis and hydroxyl radicals destruction was differentiated to discuss the quantum efficiency with 254 and 365 nm UV lamps. The removal of gaseous TCE was found to reduce by UV/TiO2 process in the presence of ozone possibly because of the ozone molecules could scavenge hydroxyl radicals produced from the excitation of TiO2 by UV radiation to inhibit the decomposition of TCE. A photoreactor design equation for the decomposition of gaseous TCE by the UV/TiO2 process in air streams was developed by combining the continuity equation of the pollutant and the surface catalysis reaction rate expression. By the proposed design scheme, the temporal distribution of TCE at various operation conditions by the UV/TiO2 process can be well modeled.  相似文献   

3.
Chu W  Choy WK 《Chemosphere》2000,41(8):1199-1204
The photodegradation of trichloroethene (TCE) in surfactant micelles was investigated. The decay of TCE was studied in the Rayonet RPR-200 merry-go-round photoreactor, at 253.7 nm monochromatic ultraviolet (UV) lamps, in the presence of surfactants. Surfactants are used as additional hydrogen sources to improve the photodegradation rates of TCE. About three times the rate increment is observed in the presence of Brij 35 surfactant micelles than in water alone. The increasing concentrations of H+ and Cl- indicate that they are the final products of TCE photodegradation (i.e. photodechlorination is the dominant mechanism in this system). A lag phase is observed at the beginning of the degradation, but the duration of the lag phase is apparently reduced as the initial pH increases. Because the overall decay of TCE is also found faster at higher pH levels, it is suggested that the free radical reaction is dominant at high pH levels, and the formation of lag phases is mainly due to the deficiency of free radicals at lower pH levels. The photodecomposition of TCE in surfactant micelles is also proven to be a clean and effective process. It generates no chlorinated by-products or intermediates during the process, and TCE is fully decomposed within a reasonable time.  相似文献   

4.
鉴于对传统内外筒结构三相内循环流化床存在的一些不足 ,提出了一种新型的基于循环流化床原理的生物流化复合反应器。新型反应器采用蜂窝状断面结构 ,机械分离与气浮原理相结合的三相分离器。为了减少反应器运行中的能耗 ,筛选出了一种新型轻质橡胶载体。并且针对这种新型反应器进行了气含率的测定 ,得出在实验范围内总平均气含率随进气量呈直线上升 ,还分别得出了上升区气含率和下降区气含率的变化情况  相似文献   

5.
Zhang M  An T  Fu J  Sheng G  Wang X  Hu X  Ding X 《Chemosphere》2006,64(3):423-431
An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.  相似文献   

6.
Kim SB  Hwang HT  Hong SC 《Chemosphere》2002,48(4):437-444
In the present work, photocatalytic degradation of volatile organic compounds including gas-phase trichloroethylene (TCE), acetone, methanol and toluene over illuminated TiO2 was closely examined in a batch photoreactor as a function of water vapor, molecular oxygen and reaction temperature. Water vapor enhanced the photocatalytic degradation rate of toluene, but was inhibitive for acetone, and, there was an optimum water vapor concentration in the TCE and methanol removal. In a nitrogen atmosphere, it showed lower photocatalytic degradation rate than in air and pure oxygen. Thus, it could be concluded that oxygen is an essential component in photocatalytic reactions by trapping photogenerated electrons on the semiconductor surface and by decreasing the recombination of electrons and holes. As for the influence of reaction temperature, it was found that photocatalytic degradation was more effective at a moderate temperature than at an elevated temperature for each compound.  相似文献   

7.
Ryu CS  Kim MS  Kim BW 《Chemosphere》2003,53(7):765-771
Alachlor photodegradation was performed using TiO(2), which was synthesized by a modified sol-gel method. The thickness of a TiO(2) film immobilised by a 5-time dip-coating was 174 nm and the average diameter of TiO(2) particles was about 10-15 nm in SEM images. The crystal structure of a TiO(2) film calcinated at 300 degrees C for 1 h was observed as a typical anatase type. The stability of a TiO(2) film by a modified sol-gel method was 4% better than TiO(2) by a typical sol-gel method.The removal rate of alachlor with both Fe(3+) and UV radiation in the absence of TiO(2) was 0.28 mg/l/h in 10 h and the removal rate of alachlor with Fe(3+)/UV in the presence of TiO(2) was 0.32 g/l/h, which was higher by 14% than that with Fe(3+)/UV system. TOC concentration during the alachlor degradation with both TiO(2) and UV radiation in the absence of added Fe(3+) decreased from 100%, through 81% and 51%, to 44% with time elapses of 4, 8, and 10 h, respectively, while TOC concentration with both added Fe(3+) and UV radiation in the absence of TiO(2) decreased from 100% to 70% in 10 h.  相似文献   

8.
The photodegradation of monuron (3-(4-chlorophenyl)-1,1-dimethylurea) in aqueous solutions under simulated solar irradiation has been conducted by different advanced oxidation processes (UV/H(2)O(2), UV/H(2)O(2)/Fe(2+), UV/H(2)O(2)/TiO(2), UV/TiO(2), dark H(2)O(2)/Fe(3+)). The degradation rates were always higher for the homogeneous catalysis in photo-Fenton reactions (UV/H(2)O(2)/Fe(2+)) compared to the heterogeneous photocatalytic systems (TiO(2)/UV and UV/H(2)O(2)/TiO(2)). Optimal concentrations of Fe(2+) and H(2)O(2) for the abatement of the herbicide in the photo-Fenton system were found to be 1 mM Fe(II) and 10 mM H(2)O(2). Several intermediary products were identified using large volume injection micro-liquid chromatography with UV detection (mu-LC-UV), mu-LC-MS and GC-MS techniques and a degradation mechanism has been proposed.  相似文献   

9.
利用自制光催化气体反应器体系,以活性炭纤维负载TiO2作催化剂,在紫外光照射下模拟降解室内污染气体甲醛,测试了活性炭纤维负载TiO2催化剂的催化活性,探讨了紫外光光强、催化剂的酸度、反应器内湿度及反应时间等控制反应的主要因素对甲醛降解率的影响。结果表明,活性炭纤维与TiO2的协同作用大大提高了对甲醛的降解效果;紫外光强增倍对甲醛降解率有一定提高,但提高幅度仅为11.71%;活性炭纤维用pH=5的TiO2溶胶浸泡做催化剂对甲醛的降解效果最好,60 min内降解率达到68.37%;反应器内的湿度为81%甲醛降解率最高,反应60 min后达82.2%;随着反应时间的延长,甲醛降解率的上升幅度不断减小,最高只能达到94.59%。  相似文献   

10.
The feasibility of the use of short-wavelength UV (254+185 nm) irradiation and TiO2 catalyst for photodegradation of gaseous toluene was evaluated. It was clear that the use of TiO2 under 254+185 nm light irradiation significantly enhanced the photodegradation of toluene relative to UV alone, owed to the combined effect of photochemical oxidation in the gas phase and photocatalytic oxidation on TiO2. The photodegradation with 254+185 nm light irradiation was compared with other UV wavelengths (365 nm (black light blue lamp) and 254 nm (germicidal UV lamp)). The highest conversion and mineralization were obtained with the 254+185 nm light. Moreover, high conversions were achieved even at high initial concentrations of toluene. Catalyst deactivation was also prevented with the 254+185 nm light. Regeneration experiments with the deactivated catalyst under different conditions revealed that reactive oxygen species played an important role in preventing catalyst deactivation by decomposing effectively the less reactive carbon deposits on the TiO2 catalyst. Simultaneous elimination of photogenerated excess ozone and residual organic compounds was accomplished by using a MnO2 ozone-decomposition catalyst to form reactive species for destruction of the organic compounds.  相似文献   

11.
Nam W  Kim J  Han G 《Chemosphere》2002,47(9):1019-1024
The photocatalytic oxidation of methyl orange under weak illumination conditions was carried out in two different types of fluidized bed reactors. TiO2 powder was employed as the photocatalysts and a 15 W low pressure mercury lamp was used as the light source and the reactor volume was 2.5 l. The parametric study of photocatalytic oxidation of methyl orange in two different types of fluidized beds was investigated; effect of catalyst loadings, pH, air flow rate, initial concentration and oxygen concentration on the oxidation reaction rate. The experimental results were analyzed in conjunction with the characteristics of fluidized bed and the reactor geometry effect on the reaction rate was analyzed.  相似文献   

12.
Quan X  Zhao X  Chen S  Zhao H  Chen J  Zhao Y 《Chemosphere》2005,60(2):266-273
Enhancement of p,p'-DDT photodegradation on soil surfaces using TiO2 induced by UV-light was mainly investigated in this work. After being spiked with p,p'-DDT, soil samples loaded with different doses of TiO2 (0%, 0.5%, 1%, 2%, and 3% wt) were exposed to UV-light irradiation for 24 h. The results indicated that the photodegradation of p,p'-DDT followed the pseudo-first-order kinetics. TiO2 accelerated the photodegradation of p,p'-DDT significantly as indicated by the half-life reduction from 23.3 h to 10.4 h, corresponding to the TiO2 content from 0% to 3% respectively. In addition, the effects of soil pH, photon flux and humic substances on p,p'-DDT degradation were investigated. The photodegradation rate increased with the increase of the soil pH and photon flux. The humic substances (2% wt) inhibited the p,p'-DDT photodegradation by reducing the amount of light available to excite the p,p'-DDT and TiO2 or by quenching radicals capable of oxidizing p,p'-DDT. p,p'-DDE, p,p'-DDD and DDMU were main degradation intermediates and they were further degraded in the presence of TiO2.  相似文献   

13.
采用自制的TiO2膜和平板式固定床型光催化氧化反应装置,对甲基橙、茜素红和罗丹明B 3种含有不同生色基团的染料化合物进行了TiO2光催化氧化降解研究,通过对照测定降解过程中吸光度、电导率、pH的变化,分析了在加入和不加入H2O22种情况下降解过程的异同,比较了3种染料化合物脱色的难易程度,揭示了降解产物中无机离子的变化规律及某些可能的产物类型.  相似文献   

14.
TiO_2膜光催化降解4,4’-二溴联苯的研究   总被引:5,自引:2,他引:3  
研究了负载于玻璃上的同定化催化剂TiO2膜光催化降解水中4,4'-二溴联苯(4,4'-DBB)的效果,考察了溶液pH值和4,4'-DBB初始浓度等对TiO2膜光催化降解4,4'-DBB的影响,探讨了降解机理.结果表明.TiO2膜光催化降解水中4,4'-DBB的效果良好,紫外光照射8 b,初始浓度为4 mg/L的4,4'-DBB的降解率高达94%,降解速率随着4,4'-DBB初始浓度的增大而下降.在溶液pH=1时,4,4'-DBB的降解效率最高.超声的加入使降解反应的速率加快.经拟合发现4,4'-DBB的降解符合拟一级反应规律,并推导出动力学方程.  相似文献   

15.
Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide   总被引:20,自引:0,他引:20  
Hager S  Bauer R  Kudielka G 《Chemosphere》2000,41(8):1219-1225
The photocatalytic oxidation of high levels of volatile chlorinated organic compounds in gas phase has been studied using a specially designed photoreactor. The influence of light intensity, initial water vapour concentration, temperature, inlet contaminant concentration and flow rate on destruction efficiency has been investigated. The performance of the titanium catalyst was strongly affected by the presence of water in the air stream. Experiments have been most successfully conducted at room temperature, low initial contaminant concentrations, low flow rates and high light intensities. Several by-products have been detected performing photocatalytic degradation of trichloroethylene (TCE) and tetrachloroethylene (PCE). No catalyst deactivation was observed.  相似文献   

16.
活性炭纤维负载TiO_2光催化降解甲醛的影响因素   总被引:3,自引:0,他引:3  
利用自制光催化气体反应器体系,以活性炭纤维负载TiO2作催化剂,在紫外光照射下模拟降解室内污染气体甲醛,测试了活性炭纤维负载TiO2催化剂的催化活性,探讨了紫外光光强、催化剂的酸度、反应器内湿度及反应时间等控制反应的主要因素对甲醛降解率的影响.结果表明,活性炭纤维与TiO2的协同作用大大提高了对甲醛的降解效果;紫外光强增倍对甲醛降解率有一定提高,但提高幅度仅为11.71%;活性炭纤维用pH=5的TiO2溶胶浸泡做催化剂对甲醛的降解效果最好,60 min内降解率达到68.37%;反应器内的湿度为81%甲醛降解率最高,反应60 min后达82.2%;随着反应时间的延长,甲醛降解率的上升幅度不断减小,最高只能达到94.59%.  相似文献   

17.
Photocatalytic reactions of phenanthrene at TiO2/water interfaces   总被引:2,自引:0,他引:2  
Wen S  Zhao J  Sheng G  Fu J  Peng P 《Chemosphere》2002,46(6):871-877
The photocatalytic oxidation of phenanthrene was investigated in aqueous TiO2 suspensions under UV light irradiation. Chemical oxygen demand (COD) measurements, UV-Vis spectrophotometer, IR spectrometer and gas chromatography-mass spectrometry (GC-MS) analytical techniques were used to monitor the reaction process. Some factors affecting the photodegradation rate were studied and some aromatic intermediates were detected during the reaction process. Fast and complete mineralization of phenanthrene was achieved in this reaction system.  相似文献   

18.
The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir-Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm-1 and 0.984 ppm min-1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

19.
Ag@TiO2 nanoparticles were synthesized by one pot synthesis method with postcalcination. These nanoparticles were tested for their photocatalytic efficacies in degradation of phenol both in free and immobilized forms under UV light irradiation through batch experiments. Ag@TiO2 nanoparticles were found to be the effective photocatalysts for degradation of phenol. The effects of factors such as pH, initial phenol concentration, and catalyst loading on phenol degradation were evaluated, and these factors were found to influence the process efficiency. The optimum values of these factors were determined to maximize the phenol degradation. The efficacy of the nanoparticles immobilized on cellulose acetate film was inferior to that of free nanoparticles in UV photocatalysis due to light penetration problem and diffusional limitations. The performance of fluidized bed photocatalytic reactor operated under batch with recycle mode was evaluated for UV photocatalysis with immobilized Ag@TiO2 nanoparticles. In the fluidized bed reactor, the percentage degradation of phenol was found to increase with the increase in catalyst loading.  相似文献   

20.
Volatile organic compounds (VOCs) are the cause of indoor air pollution and are readily emitted from furniture and cleaning agents. In Taiwan, the concentrations of indoor VOCs range roughly from 1 to 10 ppm. It is important to effectively reduce indoor VOC emissions and establish the implementation of long-term, low-cost, controlled techniques such as those found in the ultraviolet/titanium dioxide (UV/TiO2) control systems. This study evaluates the performance of a photoreactor activated by visible irradiation and packed with TiO2/quartz or TiO2/mobile catalytic material number 41 (MCM-41). The photocatalysts tested include commercial TiO2 (Degussa P-25) and synthesized TiO2 with a modified sol-gel process. The UV light had a wavelength of 365 nm and contained an 8-W, low-pressure mercury lamp. Reactants and products were analyzed quantitatively by using gas chromatography with a flame-ionization detector. It is important to understand the influence of such operational parameters, such as concentration of pollutant, temperature, and retention time of processing. The indoor concentrations of VOCs varied from 2 to 10 ppm. Additionally, the temperatures ranged from 15 to 35 degrees C and the retention time tested from 2 to 8.2 sec. The results show that quartz with TiO2 had a better photoreductive efficiency than quartz with MCM-41. The toluene degradation efficiency of 77.4% with UV/TiO2/quartz was larger than that of 54.4% with the UV/TiO2/MCM-41 system under 10-min reaction time. The degradation efficiency of the UV/TiO2 system decreased with the increasing concentrations of indoor VOCs. The toluene degradation efficiency at 2 ppm was approximately 5 times greater than that at 10 ppm. The photoreduction rate of the VOCs was also evaluated with the Langmuir-Hinshewood model and was shown to be pseudo-first-order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号