首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potential threats to drinking water and water quality continue to be a major concern in many regions of the United States. New Jersey, in particular, has been at the forefront of assessing and managing potential contamination of its drinking water supplies from hazardous substances. The purpose of the current analysis is to provide an up-to-date evaluation of the occurrence and detected concentrations of methyl tertiary butyl ether (MTBE) and several other volatile organic compounds (VOCs) in public water systems, private wells, and ambient groundwater wells in New Jersey based on the best available data, and to put these results into context with federal and state regulatory and human-health benchmarks. Analyses are based on the following three databases that contain water quality monitoring data for New Jersey: Safe Drinking Water Information System (SDWIS), Private Well Testing Act (PWTA), and National Water Information System (NWIS). For public water systems served by groundwater in New Jersey, MTBE was detected at a concentration ≥10 μg/L, ≥20 μg/L, and ≥70 μg/L at least once in 30 (2%), 21 (1.4%), and five (0.3%) of sampled systems from 1997 to 2011, respectively. For private wells in New Jersey, MTBE was detected at a concentration ≥10 μg/L, ≥20 μg/L, and ≥70 μg/L at least once in 385 (0.5%), 183 (0.2%), and 46 (0.05%) of sampled wells from 2001 to 2011, respectively. For ambient groundwater wells in New Jersey, MTBE was detected at a concentration ≥10 μg/L, ≥20 μg/L, and ≥70 μg/L at least once in 14 (2.1%), 9 (1.3%), and 4 (0.6%) of sampled wells from 1993 to 2012, respectively. Average detected concentrations of MTBE, as well as detected concentrations at upper-end percentiles, were less than corresponding benchmarks for all three datasets. The available data show that MTBE is rarely detected in various source waters in New Jersey at a concentration that exceeds the State's health-based drinking water standard or other published benchmarks, and there is no evidence of an increasing trend in the detection frequency of MTBE. Other VOCs, such as tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene, are detected more often above corresponding regulatory or human-health benchmarks due to their higher detected concentrations in water and/or greater toxicity values. The current analysis provides useful data for evaluating the nature and extent of historical and current contamination of water supplies in New Jersey and potential opportunities for public exposures and health risks due to MTBE and other VOCs on a statewide basis. Additional forensic or forecasting analyses are required to identify the sources or timing of releases of individual contaminants at specific locations or to predict potential future water contamination in New Jersey.  相似文献   

2.
The pollution levels of typical semivolatile organic compounds (SVOCs) consisting of 15 polycyclic aromatic hydrocarbons (PAHs), 20 organic chlorinated pesticides (OCPs), and 15 phthalate esters (PAEs) were investigated in small rivers running through the flourishing cities in Pearl River Delta region, China. The concentrations of ∑15PAHs were 2.0–48 ng/L and 29–1.2?×?103 ng/g in the water and sediment samples, respectively. The ∑20OCPs were 6.6–57 ng/L and 9.3–6.0?×?102 ng/g in the water and sediment samples, respectively. The concentrations of ∑15PAEs were much higher both in the water and sediments. The partition process of the detected SVOCs between the water and sediment did not reach the equilibrium state at most of the sites when sampling. The combustion of petroleum products and coal was the major source of the detected PAHs. The OCPs were mainly historical residue, whereas the new inputs of dichlorodiphenyltrichloroethane (DDT), chlordane, and endosulfan were possible at several sites. The industrial and domestic sewage were the major source for the PAEs; storm water runoff accelerated the input of PAEs. No chronic risk of the SVOCs was identified by a health risk assessment through daily water consumption, except for the ∑20OCPs that might cause cancer at several sites. Nevertheless, the integrated health risk of the SVOCs should not be neglected and need intensive investigations.  相似文献   

3.
Six antibiotics, tetracyclines (TCs), and quinolones (QNs) in farmland soils from four coastal cities in Fujian Province of China were investigated. Oxytetracycline was most frequently detected, followed by enrofloxacin, ciprofloxacin, chlorotetracycline, ofloxacin, and tetracycline, with maximum concentrations of 613.2, 637.3, 237.3, 2668.9, 205.7, and 189.8 μg kg?1, respectively. Samples from Putian City contained the highest maximum concentration of ∑TCs (3,064.2 μg kg?1), whereas those from Fuzhou City contained the highest maximum concentration of ∑QNs (897.8 μg kg?1). It is noteworthy that the ∑TCs and ∑QNs in 46.4 and 28.6 % of samples exceeded the ecotoxic effect trigger value (100 μg kg?1), respectively. The concentrations of these antibiotics and five tetracycline resistance genes in four soil plots at depth profiles were quantified thereafter. In most cases, both antibiotics and resistance genes decreased with the increase of depth. Some antibiotics can be detected at a depth of 60–80 cm where the abundance of tetO, tetM, and tetX reached up to 107 copies g?1. Additionally, the sum of all tet genes (normalized to 16S rRNA genes) correlated with ∑TCs significantly (r?=?0.676). Our results suggest that resistance determinants can migrate to deeper soil layers and would probably contaminate groundwater by vertical transport.  相似文献   

4.
This study was aimed to determine the presence of 69 organic contaminants in 77 representative bottled waters collected from 27 countries all over the world. All water samples were contained in polyethylene terephthalate bottles. Target compounds were (1) environmental contaminants (including 13 polycyclic aromatic hydrocarbons (PAHs), 31 pesticides including organochlorine (OCPs), organophosphorus, and pyrethroids; 7 polychlorinated biphenyls (PCBs); and 7 triazines) and (2) plasticizers (including 6 phthalates and 5 other compounds). Samples were analyzed by stir bar sorptive extraction followed by gas chromatography-tandem mass spectrometry. PAHs, OCPs, PCBs, and triazines, which are indicators of groundwater pollution, were not detected in most of the samples, except for naphthalene (0.005–0.202 μg/L, n?=?16). On the other hand, plastic components were detected in 77 % of the samples. Most frequently detected compounds were dimethyl phthalate and benzophenone at concentrations of 0.005–0.125 (n?=?41) and 0.014–0.921 (n?=?32), respectively. Levels detected are discussed in terms of contamination origin and geographical distribution. Target compounds were detected at low concentrations. Results obtained showed the high quality of bottled water in the different countries around the world.  相似文献   

5.
A simultaneous method for quantifying eight metabolites of organophosphate pesticides and pyrethroid pesticides in urine samples has been established. The analytes were extracted using liquid–liquid extraction coupled with WCX solid phase extraction (SPE) cartridges. Eight metabolites were chemically derivatized before analysis using gas chromatography–tandem mass spectrometry (GC–MS–MS). The separation was performed on a HP-5MS capillary column (30 m × 0.25 mm × 0.25 µm) with temperature programming. The detection was performed under electro-spray ionization (ESI) in multiple reaction monitoring (MRM) mode. An internal standard method was used. The extraction solvent, types of SPE cartridges and eluents were optimized by comparing the sample recoveries under different conditions. The results showed that the calibration curves of the five organophosphorus pesticides metabolites were linear in the range of 0.2–200 μg/L (r2 ≥ 0.992) and that of the three pyrethroid pesticides metabolites were linear in the range of 0.025–250 μg/L (r2 ≥ 0.991). The limits of detection (LODs, S/N ≥ 3) and the limits of quantification (LOQs, S/N ≥ 10) of the eight metabolites were 0.008–0.833 μg/L and 0.25–2.5 μg/L, respectively. The recoveries of the eight metabolites ranged from 54.08% to 82.49%. This efficient, stable, and cost-effective method is adequate to handle the large number of samples required for surveying the exposure level of organophosphorus and pyrethroid pesticides in the general population.  相似文献   

6.
The presence of residual organochlorine and organophosphorus pesticides was evaluated at different periods of sugarcane cultivation in agricultural soil and water samples from the town of Tlaltizapan, which is located in the state of Morelos in Mexico, to determine the presence and persistence of these compounds and their possible effects on the region. The compounds p,p′-DDE, p,p′-DDD (metabolites of p,p′-DDT), γ-HCH and heptachlor were found in more of 95% of the sampling zones in the three monitoring periods performed along 2 years. The highest concentration detected (129.6 μg/kg dry soil) was for α-HCH, but its frequency of detection was ~5%. The low detection frequency of α-HCH and the high concentration values of γ-HCH indicate the repeated use of technical-grade HCH and Lindane (γ-HCH) in the region. Among the organophosphorus pesticides, ethyl parathion was the compound with the highest soil concentration, at ~2000 μg/kgdry soil, during the initial monitoring. However, this compound was detected in the second monitoring with a concentration of ~4 μg/kgdry soil, but it was not detected in the third, indicating that is was not accumulated in the environment. The heptachlor was the compound most commonly found in all water samples, within a range of 0.45–1.25 ng/L. The presence of this organochlorine compound in the water samples indicated a possible migration from the soil to water bodies due to soil erosion. The presence of organophosphorus compounds was not detected in the water samples, which could be attributed to the moderate persistence of these compounds and their consequent degradation before arriving at the water bodies.  相似文献   

7.
Arsenic contamination of groundwater is a major threat to human beings globally. Among various methods available for arsenic removal, adsorption is fast, inexpensive, selective, accurate, reproducible and eco-friendly in nature. The present paper describes removal of arsenate from water on zirconium oxide-coated sand (novel adsorbent). In the present work, zirconium oxide-coated sand was prepared and characterised by infrared and X-ray diffraction techniques. Batch experiments were performed to optimise different adsorption parameters such as initial arsenate concentration (100–1,000 μg/L), dose (1–8 g/L), pH of the solution (2–14), contact time (15–150 min.), and temperature (20, 30, 35 and 40 °C). The experimental data were analysed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Furthermore, thermodynamic and kinetic parameters were evaluated to know the mode of adsorption between ZrOCMS and As(V). The maximum removal of arsenic, 97 %, was achieved at initial arsenic concentration of 200 μg/L, after 75 min at dosage of 5.0 g/L, pH?7.0 and 27?±?2 °C. For 600 μg/L concentration, the maximum Langmuir monolayer adsorption capacity was found to be 270 μg/g at 35 °C. Kinetic modelling data indicated that adsorption process followed pseudo-second-order kinetics. The mechanism is controlled by liquid film diffusion model. Thermodynamic parameter, ΔH°, was ?57.782, while the values of ΔG° were ?9.460, ?12.183, ?13.343 and ?13.905 kJ/mol at 20, 30, 35 and 40 °C, respectively, suggesting exothermic and spontaneous nature of the process. The change in entropy, ΔS°?=??0.23 kJ/mol indicated that the entropy decreased due to adsorption of arsenate ion onto the solid adsorbent. The results indicated that the reported zirconium oxide-coated marine sand (ZrOCMS) was good adsorbent with 97 % removal capacity at 200 μg/L concentration. It is interesting to note that the permissible limit of arsenic as per World Health Organization is 10 μg/L, and in real situation, this low concentration can be achieved through this adsorbent. Besides, the adsorption capacity showed that this adsorbent may be used for the removal of arsenic from any natural water resource.  相似文献   

8.
Microbial source tracking (MST) and chemical source tracking (CST) markers were utilized to identify fecal contamination in harvested rainwater and gutter debris samples. Throughout the sampling period, Bacteroides HF183 was detected in 57.5 % of the tank water samples and 95 % of the gutter debris samples, while adenovirus was detected in 42.5 and 52.5 % of the tank water and gutter debris samples, respectively. Human adenovirus was then detected at levels ranging from below the detection limit to 316 and 1253 genome copies/μL in the tank water and debris samples, respectively. Results for the CST markers showed that salicylic acid (average 4.62 μg/L) was the most prevalent marker (100 %) in the gutter debris samples, caffeine (average 18.0 μg/L) was the most prevalent in the tank water samples (100 %) and acetaminophen was detected sporadically throughout the study period. Bacteroides HF183 and salicylic acid (95 %) and Bacteroides HF183 and caffeine (80 %) yielded high concurrence frequencies in the gutter debris samples. In addition, the highest concurrence frequency in the tank water samples was observed for Bacteroides HF183 and caffeine (60 %). The current study thus indicates that Bacteroides HF183, salicylic acid and caffeine may potentially be applied as source tracking markers in rainwater catchment systems in order to supplement fecal indicator analyses.  相似文献   

9.
The residual levels of phthalate esters (PAEs) in the surface and two core sediments from Lake Chaohu were measured with a gas chromatograph–mass spectrometer (GC–MS). The temporal–spatial distributions, compositions of PAEs, and their effecting factors were investigated. The results indicated that di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl) phthalate (DEHP) were three dominant PAE components in both the surface and core sediments. The residual level of total detected PAEs (∑PAEs) in the surface sediments (2.146?±?2.255 μg/g dw) was lower than that in the western core sediments (10.615?±?9.733 μg/g) and in the eastern core sediments (5.109?±?4.741 μg/g). The average content of ∑PAEs in the surface sediments from the inflow rivers (4.128?±?1.738 μg/g dw) was an order of magnitude higher than those from the lake (0.323?±?0.093 μg/g dw), and there were similar PAE compositions between the lake and inflow rivers. This finding means that there were important effects of PAE input from the inflow rivers on the compositions and distributions of PAEs in the surface sediments. An increasing trend was found for the residual levels of ΣPAEs, DnBP, and DIBP from the bottom to the surface in both the western and eastern core sediments. Increasing PAE usage with the population growth, urbanization, and industrial and agricultural development in Lake Chaohu watershed would result in the increasing production of PAEs and their resulting presence in the sediments. The significant positive relationships were also found between the PAE contents and the percentage of sand particles, as well as TOC contents in the sediment cores.  相似文献   

10.
Perchlorate concentrations in rice samples from many different provinces, and correlation with surface water contamination, were investigated in the Republic of Korea. Perchlorate levels in the 51 rice samples purchased from local markets ranged from below the detection limit to 1.79?±?0.39 μg/kg with a mean level of 0.21 μg/kg and 7 samples collected from the Nakdong River watershed ranged from 0.38?±?0.1 to 3.23?±?0.47 μg/kg with a mean level of 0.9 μg/kg. The correlation coefficient between perchlorate levels in rice samples from the Nakdong river watershed and the levels in surface water was estimated to be approximately 0.904 in the 95 % confidence interval. These results show that surface water contamination was highly related to the perchlorate pollution of rice in the Republic of Korea.  相似文献   

11.
Heavy metal contamination is a long-standing and very well-known public health problem, and its exposure can cause damage to several organs of human body, especially on the central nervous system of young children and teenagers. The aim of this article is to evaluate lead, cadmium, and manganese contamination in 125 children from 6 to 13 years old living in contaminated areas during the period from 2006 to 2009 (São Vicente, Cubatão Downtown, Bertioga and Cubatão Pilões/Água Fria). This estuary area is the most important example of environmental degradation by chemicals from industrial sources. This is a cross-sectional study through clinical examinations and dental enamel tests. All mothers from these children lived in the area since before the pregnancy. Lead, cadmium, and manganese levels (μg/g) were measured on dental enamel samples through graphite furnace atomic absorption spectrometry, searching for the occurrence of heavy metals. The mean lead concentrations were 139.48 μg/g in Cubatão Pilões/Água Fria, 170.45 μg/g in Cubatão Downtown, 213.52 μg/g in São Vicente, and 151.89 μg/g in Bertioga. The mean cadmium concentrations were 10.83 μg/g in Cubatão Pilões/Água Fria, 12.58 μg/g in Cubatão Downtown, 10.92 μg/g in São Vicente, and 14.57 μg/g in Bertioga. The mean manganese concentrations were 23.49 μg/g in Cubatão Pilões/Água Fria, 30.90 μg/g in Cubatão Downtown, 41.46 μg/g in São Vicente, and 42.00 μg/g in Bertioga. Dental surface enamel may be used as an efficient biomarker of past environmental exposure to lead, manganese, and cadmium which are associated to well-known sources of heavy metal contamination. The results suggest that the evaluated children were exposed to sources of lead, cadmium, and manganese since before their conceptions. Although Bertioga initially was chosen as a control area of this study, it was also was verified to have heavy metal contamination on examined children.  相似文献   

12.
Pesticides residues in fresh and smoked body parts of Clarias gariepinus were investigated to evaluate their contamination status and risks to human health. The results gave an overview of the contamination levels of these (head, body trunk and liver) fish parts. The pesticides [organochlorine (OC), organophosphorus (OP), pyrethroids (PY) and others like: guazatine, methoprene, metalaxyl and imidachloprid] concentration in the fresh and smoked body parts ranged from 0.002 to 0.221 µg/kg and 0.002 to 0.175 µg/kg, with mean concentration of 0.002–0.218 µg/kg and 0.002–0.126 µg/kg, respectively. Smoking was observed to reduce the overall pesticide concentration as follows: head (0.23 µg/kg or 17.3%), liver (0.34 µg/kg or 29.8%) and muscles (0.41 µg/kg or 27.2%). The pesticides contents were significantly lower than standard daily intake and the risk associated with consumption of the fish also showed that the fish posed no potential threat to consumers.  相似文献   

13.
In this study, contamination levels were determined for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and perfluorinated alkylated substances (PFASs) in traditional Greenland seafood items, such as raw and smoked fish fillet (salmon and halibut), whale and seal meat and narwhal mattak (skin and blubber). The daily intake of PCBs, PBDEs and PFASs through traditional seafood items in Greenland was assessed. Based on the presented levels of contaminants, in combination with earlier food intake studies, suggests that the daily exposure was below the tolerable daily intake threshold for all compounds. BDE-47 was the only PBDE-congener detected in all food items, except in smoked halibut. The levels of BDE-47 varied from < LOD in smoked halibut up to 18 ng/g lw in narwhal mattak and 21 ng/g lw in whale beef. ∑PCB were lowest in smoked halibut (37 ng/g lw) and highest in narwhal mattak with 1,146 ng/g lw. Perfluorooctane sulfonate (PFOS) was the most common of the PFASs. However, ΣPFASs were below detection limits in most fish fillet samples, and varied from 2.9 ng/g ww in whale beef to 13.5 ng/g ww in seal beef. The present study shows that the exclusion from the diet of local food items such as intestines and blubber have a strong positive effect for the reduction of POPs levels in food, without a reducing the health benefits of traditional food intake considerably.  相似文献   

14.
As part of a large study on assessing the impact of environmental contaminants in Indian avifauna, the presence of organochlorine pesticides (OCPs) in liver tissues of 16 species of birds collected from Ahmedabad, India during 2005–2007 was quantified. The higher concentrations of total organochlorine pesticides were detected in livers of shikra Accipiter badius (3.43?±?0.99 μg/g wet wt) and the lower levels in white ibis Pseudibis papillosa (0.02?±?0.01 μg/g wet wt). Marked differences in the concentrations of total OCPs occurred among species (p?<?0.05). Concentrations of DDT and its metabolites, hexachlorocyclohexane (HCH) and isomers, dieldrin, and heptachlor epoxide were lower than the concentrations reported for various species of birds in India. Accumulation pattern of organochlorine pesticides in birds was, in general, in the order HCH > DDT > heptachlor epoxide > dieldrin. Among various pesticides analyzed, p,p′-DDE and β-HCH contributed maximum towards the total OCPs and study indicates the continuous use of lindane and DDT for agriculture and public health purpose, respectively. Although no serious threat is posed by any of the organochlorine pesticides detected in the present study species, continued monitoring is recommended.  相似文献   

15.
Residues of pesticides in fish farming productions from barrage ponds are seldom studied in spite of increasing health questionings and environmental concerns. The purpose of this study is to establish the pesticide contamination profiles of sediments and edible fish from five ponds in Northeastern France. Multi-residues method and liquid chromatography–tandem mass spectrometry analysis were used to quantify 13 pesticides (azoxystrobin, carbendazim, clomazone, diflufenican, dimethachlor, fluroxypyr, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop and thifensulfuron-methyl). Ten sediments and 143 muscles samples were analysed, corresponding to two successive fishing campaigns (first fishing date and second fishing date (P2), about 1 year later) on five sites (noted C-0, C-25, C-45, C-75 and C-85 to express the increasing gradient of crop area). Isoproturon was present in all sediments samples (1.8–56.4 μg/kg dry weight). During P2 period, carbendazim was quantified in the fish of site C-0 (0.09?±?0.02, 0.2?±?0.1 and 0.17?±?0.06 μg/kg wet weight (ww) for roach, carp and perch, respectively). Metazachlor was only quantified in perch of the site C-25 (0.13?±?0.02 μg/kg ww). Concentrations of isoproturon were similar for the sites C-45 and C-75 with 0.4?±?0.1 and 0.75?±?0.06 μg/kg ww for carp and perch, respectively. Contamination of fish reflected generally concentrations in surroundings. Isoproturon was the most concentrated and its main source was water for perch while carp was exposed through both water and sediments, highlighting their life strategies in pond.  相似文献   

16.
Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95?±?1.16 mg/L (original non-sterilized sediments), 32.50?±?0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50?±?1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00?±?0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50?±?10 μg/L (original non-sterilized sediments) to 110?±?45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids along with the increased release of iron and arsenic. Our findings provide evidence that humic acids can enhance the microbially mediated release of sedimentary ferrous iron in an arsenic-affected area. It is thus suggested that the control of anthropogenic humic acid use and entry into the environment is important for preventing the subsequent iron contamination in groundwater.  相似文献   

17.
Seventeen organochlorine pesticides (OCPs) were investigated in the water and sediments from a waterbird-inhabited lake (Yangchaihu Lake) to evaluate their current pollution levels and potential risks. The concentrations of total OCPs in water and sediments were 10.12–59.75 ng/l and 4.25–27.35 ng/g dry weight, respectively. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) were the most abundant OCPs, while HCB and cyclodiene pesticides were detected with low levels. Levels of ∑OCPs (sum of 17 OCPs) at sites highly influenced by waterbirds were significantly higher than the sites with no significant waterbird populations (one-way ANOVA, P?相似文献   

18.
An assessment of the off-site migration of pesticides from agricultural activity into the environment in the Neuquen River Valley was performed. The aim of this study was to evaluate the distribution of pesticides in several compartments of a small agricultural sub-catchment. Soil, surface water, shallow groundwater and drift deposition were analyzed for pesticide residues. Results showed the presence of some pesticide residues in soil, surface water and shallow groundwater compartments. The highest detection frequencies in water (surface and subsurface) were found for azinphos-methyl and chlorpyrifos (>70%). In terms of concentration, the highest levels were observed in shallow groundwater for azinphos methyl (22.5 μg/L) and carbaryl (45.7 μg/L). In the soil, even before the application period had started, accumulation of residues was present. These residues increased during the period studied. Spray drift during pesticide application was found to be a significant pathway for the migration of pesticide residues in surface water, while leaching and preferential flows were the main transport routes contributing to subsurface contamination.  相似文献   

19.
This study deals with the evaluation of water quality of the Three Gorges Reservoir (TGR) in order to assess its suitability as a raw water source for drinking water production. Therefore, water samples from (1) surface water, (2) tap water, and (3) wastewater treatment plant effluents were taken randomly by 2011–2012 in the area of the TGR and were analyzed for seven different organic contaminant groups (207 substances in total), applying nine different analytical methods. In the three sampled water sources, typical contaminant patterns were found, i.e., pesticides and polycyclic aromatic hydrocarbons (PAH) in surface water with concentrations of 0.020–3.5 μg/L and 0.004–0.12 μg/L, disinfection by-products in tap water with concentrations of 0.050–79 μg/L, and pharmaceuticals in wastewater treatment plant effluents with concentrations of 0.020–0.76 μg/L, respectively. The most frequently detected organic compounds in surface water (45 positives out of 57 samples) were the pyridine pesticides clopyralid and picloram. The concentrations might indicate that they are used on a regular basis and in conjunction in the area of the TGR. Three- and four-ring PAH were ubiquitously distributed, while the poorly soluble five- and six-ring members, perfluorinated compounds, polychlorinated biphenyls, and polybrominated diphenyl ethers, were below the detection limit. In general, the detected concentrations in TGR are in the same range or even lower compared to surface waters in western industrialized countries, although contaminant loads can still be high due to a high discharge. With the exception of the two pesticides, clopyralid and picloram, concentrations of the investigated organic pollutants in TGR meet the limits of the Chinese Standards for Drinking Water Quality GB 5749 (Ministry of Health of China and Standardization Administration of China 2006) and the European Union (EU) Council Directive 98/83/EC on the quality of water intended for human consumption (The Council of the European Union 1998), or rather, the EU Directive on environmental quality standards in the field of water policy (The European Parliament and The Council of the European Union 2008). Therefore, the suggested use of surface water from TGR for drinking water purposes is a valid option. Current treatment methods, however, do not seem to be efficient since organic pollutants were detected in significant concentrations in purified tap water.  相似文献   

20.
Phenoxyacetic and benzoic acid herbicides are widely used agricultural, commercial, and domestic pesticides. As a result of high water solubility, mobility, and persistence, 2,4-dichlorophenoxyacetic acid (2,4-D), methylchlorophenoxypropionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba) have been detected in surface and waste waters across Canada. As current municipal wastewater treatment plants do not specifically address chronic, trace levels of contaminants like pesticides, an urgent need exists for an efficient, environmentally friendly means of breaking down these toxic herbicides. A commercially available herbicide mix, WeedEx, containing 2,4-D, mecoprop, and dicamba, was subjected to treatment using membrane bioreactor (MBR) technology. The three herbicides, in simulated wastewater with a chemical oxygen demand of 745 mg/L, were introduced to the MBR at concentrations ranging from 300 μg/L to 3.5 mg/L. Herbicides and biodegradation products were extracted from MBR effluent using solid-phase extraction followed by detection using high-performance liquid chromatography coupled with mass spectrometry. 2,4-D was reduced by more than 99.0 % within 12 days. Mecoprop and dicamba were more persistent and reduced by 69.0 and 75.4 %, respectively, after 112 days of treatment. Half-lives of 2,4-D, mecoprop and dicamba during the treatment were determined to be 1.9, 10.5, and 28.3 days, respectively. Important water quality parameters of the effluent such as dissolved oxygen, pH, ammonia, chemical oxygen demand, etc. were measured daily. MBR was demonstrated to be an environmentally friendly, compact, and efficient method for the treatment of toxic phenoxyacetic and benzoic acid herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号