首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

2.
Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L−1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m−1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and rejection follows the order LFC-1 (>90%) > MX07 (25–95%)  ESNA (30–90%) > GM (3–47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and rejection follows the order CaCl2 < KCl  K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding (71–74%) than the ESNA NF membrane (11–56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (, , and ) the rejection (38–56%) is fairly proportional to the ri,s/rp ratio (0.32–0.62) for the ESNA membrane.  相似文献   

3.
Oxidation of d-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing d-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released d-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of d-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3–10 nm in diameter, to be about , and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.  相似文献   

4.
An increasing percentage of agricultural land in Germany is used for oil seed plants. Hence, rape has become an important agricultural plant (in Saxony 1998: 12% of the farmland) in the recent years. During flowering of rape along with intensive radiation and high temperatures, a higher production and emission of biogenic VOC was observed. The emissions of terpenes were determined and more importantly, high concentrations of organic carbonyl compounds were observed during this field experiment. All measurements of interest have been carried out during two selected days with optimal weather conditions. It is found that the origin or the mechanism of formation of different group of compounds had strong influence on the day to day variation of their concentrations. The emission flux of terpenes from flowering rape plants was determined to be 16–32 μg h−1 m−2 (30–60 ng h−1 per g dry plant––540–1080 ng h−1 per plant), in total. Limonene, α-thujene and sabinene were the most important compounds (about 60% of total terpenes). For limonene and sabinene reference emission rates (MS) and temperature coefficients were determined: βlimonene=0.108 K−1 and MS=14.57 μg h−1 m−2; βsabinene=0.095 K−1 and MS=5.39 μg h−1 m−2.The detected carbonyl compound concentrations were unexpectedly high (maximum formaldehyde concentration was 18.1 ppbv and 3.4 ppbv for butyraldehyde) for an open field. Possible reasons for these concentrations are the combination of primary emission from the plants induced by high temperature and high ozone stress, the secondary formation from biogenically and advected anthropogenically emitted VOC at high radiation intensities and furthered by the low wind speeds at this time.  相似文献   

5.
The aim of this study is to present the organic and inorganic spectral aerosol module-radiative (ORISAM-RAD) module, allowing the 3D distribution of aerosol radiative properties (aerosol optical depth, single scattering albedo and asymmetry parameter) from the ORISAM module. In this work, we test ORISAM-RAD for one selected day (24th June) during the ESCOMPTE (expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d’emissions) experiment for an urban/industrial aerosol type. The particle radiative properties obtained from in situ and AERONET observations are used to validate our simulations. In a first time, simulations obtained from ORISAM-RAD indicate high aerosol optical depth (AOD)0.50–0.70±0.02 (at 440 nm) in the aerosol pollution plume, slightly lower (10–20%) than AERONET retrievals. In a second time, simulations of the single scattering albedo (ωo) have been found to well reproduce the high spatial heterogeneities observed over this domain. Concerning the asymmetry parameter (g), ORISAM-RAD simulations reveal quite uniform values over the whole ESCOMPTE domain, comprised between 0.61±0.01 and 0.65±0.01 (at 440 nm), in excellent agreement with ground based in situ measurements and AERONET retrievals. Finally, the outputs of ORISAM-RAD have been used in a radiative transfer model in order to simulate the diurnal direct radiative forcing at different locations (urban, industrial and rural). We show that anthropogenic aerosols strongly decrease surface solar radiation, with diurnal mean surface forcings comprised between −29.0±2.9 and −38.6±3.9 W m−2, depending on the sites. This decrease is due to the reflection of solar radiations back to space (−7.3±0.8<ΔFTOA<−12.3±1.2 W m−2) and to its absorption into the aerosol layer (21.1±2.1<ΔFATM<26.3±2.6 W m−2). These values are found to be consistent with those measured at local scale.  相似文献   

6.
Atmospheric transport and deposition of polychlorinated biphenyls (PCBs) is an important problem for ecosystems around the world. Data from several monitoring networks demonstrate that atmospheric PCB concentrations are dramatically elevated in urban areas compared to rural or background regions, such that these urban emissions of PCBs support the regional and global transport and deposition of PCBs to more remote areas. Identifying and controlling the sources of urban atmospheric PCBs is thus essential in minimizing the regional and global transport and deposition of these compounds. From December 1999 to November 2000, gas-phase PCB concentrations were measured at two monitoring locations, 8 km apart, within the New York City metropolitan area, at Jersey City and Bayonne, NJ. Concentrations, congener patterns, and temporal patterns of PCBs differ dramatically at the two sites, suggesting that a significant source of atmospheric PCBs exists within 8 km of the Bayonne site, resulting in spikes in gas-phase PCB concentration at Bayonne that are not observed at Jersey City. The Regional Atmospheric Model System (RAMS) coupled with the Hybrid Particle and Concentration Transport model (HYPACT) was used to estimate that the PCB source near Bayonne emits a flux of ΣPCBs on the order of 100 g d−1. Extrapolation of this source magnitude to the area of New York City suggests that this urban area emits at least 300 kg yr−1 ΣPCBs to the regional atmosphere, similar in magnitude to the flow of ΣPCB out of the Upper Hudson River into the New York/New Jersey Harbor.  相似文献   

7.
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/DFs) were detected in waterfowl such as common cormorants, tufted ducks, and their prey, namely fish and bivalves from Lake Shinji, Japan. The concentration of total PCDDs/DFs-TEQ was found to be higher in the muscle tissues of common cormorants than in those of tufted ducks. The results of hierarchical cluster analysis implied that the residue distribution pattern of PCDD/DF homologues was considerably different between these two species. Furthermore, biomagnification factors (BMFs) were estimated from bivalves as prey to tufted duck muscles as target organs. Despite the highest concentrations of 1,3,6,8- and 1,3,7,9-TeCDD in tufted ducks and their prey, however, the BMFs of these isomers were calculated to be lower than those of the toxic 2,3,7,8-substituted PCDDs/DFs. On the other hand, log BMF of toxic 2,3,7,8-substituted PCDDs/DFs were significantly higher for lower chlorinated isomers than those of the higher chlorinated isomers. The biota-sediment accumulation factors (BSAFs) of PCDDs/DFs were also estimated using shijimi clam and fish samples against sediment from Lake Shinji. The average BSAFs were estimated and ranged from 4.0×10−3 to 2.2×10−1 and 2.0×10−4 to 2.0×10−1 for bivalve and fish samples, respectively. Based on calculated BMFs and BSAFs, the total PCDD/DF-TEQ levels in the tufted duck were estimated to have been lowest (2.0 pg TEQ/g dry weight basis) in 1947 and highest (9.8 pg TEQ/g) in 1971.  相似文献   

8.
Gas/particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air was investigated in a satellite town in Eastern China from April 2007 to January 2008 comprehending large temperature variations (from 3 to 34 °C, daily average). Molecular weight, molecular structure and ambient temperatures are the three major factors that govern the gas/particle partitioning of atmospheric PCDD/Fs throughout the year. Generally, good agreements were obtained (except for winter) between measured particulate fractions and theoretical estimates of both the Junge–Pankow adsorption model and Harner Bidleman absorption model using different sets of subcooled liquid vapor pressure and octanol–air partition coefficient (Koa), respectively. Models utilizing estimates, derived from gas chromatographic retention indices (GC-RIs), are more accurate than that of entropy-based. Moreover, during winter, the Koa-based model using the GC-RIs approach performs better on lower chlorinated PCDD/Fs than that of -based. Furthermore, possible sources of mismatch between measured and predicted values in winter (3–7 °C) were discussed. Gas adsorption artifact was demonstrated to be of minor importance for the phenomena observed. On the other hand, large deviations of slopes (mr) and intercepts (br) in logKp vs. plots from theoretical values are observed in the literature data and these are found to be linearly correlated with ambient temperatures (P<0.001) in this study. This indicates that the non-equilibrium partitioning of PCDD/Fs in winter may be significantly influenced by the colder temperatures that may have slowed down the exchange between gaseous and particulate fractions.  相似文献   

9.
Vehicle emissions can constitute a major share of ambient concentrations of many volatile organic compounds (VOCs) and other air pollutants in urban areas. Especially high concentrations may occur at curbsides, vehicle cabins, and other microenvironments. Such levels are not reflected by monitoring at fixed sites. This study reports on measurements of VOCs made from buses and cars in Detroit, MI. A total of 74 adsorbent tube samples were collected on 40 trips and analyzed by GC-MS for 77 target compounds. Three bus routes, selected to include residential, commercial and heavily industrialized areas, were sampled simultaneously on four sequential weeks during morning and afternoon rush hour periods. Nineteen compounds were regularly detected and quantified, the most prevalent of which included hexane/2-methyl pentane (15.6±5.8 μg m−3), toluene (10.2±7.9 μg m−3), m,p-xylene (6.8±4.7 μg m−3), benzene (4.5±3.0 μg m−3), 1,2,4-trimethylbenzene (4.0±2.6 μg m−3), o-xylene (2.2±1.6 μg m−3), and ethylbenzene (2.1±1.5 μg m−3). VOC levels in bus interiors and outdoor levels along the roadway were similar. Despite the presence of large industrial sources, route-to-route variation was small, but temporal variation was large and statistically significant. VOC compositions and trends indicate the dominance of vehicle sources over the many industrial sources in Detroit with the possible exceptions of styrene and several chlorinated VOCs. In-bus levels exceeded concentrations at fixed site monitors by a factor of 2–4. VOC concentrations in Detroit traffic are generally comparable to levels measured elsewhere in the US and Canada, but considerably lower than measured in Asia and Europe.  相似文献   

10.
A nationwide study of indoor air concentrations of 26 VOCs was conducted in Canada in 1991. The study design was based upon random selection of private residences from 1986 Census data and incorporated a temporal stratification feature that allowed sampling of residences in each of four regions of the country at different times of the year with equal probability. Average 24 h concentrations of 26 VOCs in 754 residences were obtained by a passive monitoring method. Initially, climatic parameters were found to have the second highest relative weight among 14 factors identified by factor analysis. Further analysis by linear regression showed that individual VOC concentrations and average outdoor temperature or relative humidity were poorly correlated (r > 0.13). Detailed analysis of the data from four regions of Canada also gave poor correlations between household VOC concentrations and temperature or relative humidity. Concentrations of all 26 VOCs averaged 7.8 μg m−3 in winter, 10.3 μg m−3 in spring, 4.4 μg m−3 in summer and 10.8μ m−3 in fall. The highest concentrations of individual compounds averaged 84μm−3 for toluene in the spring and 42 μg m−3 in the fall, and 44 μg m−3 for decane in the spring and 48 μg m−3 in the fall. Segregation of the results into outdoor temperature ranges of 0°C, 0–15 and > 15°C gave mean indoor VOC concentrations of 10.3, 9.8 and 50μgm−3, respectively. Further examination of the results revealed that the likely presence of sources within homes had a far greater influence on indoor concentrations than ventilation which is partly influenced by climate.  相似文献   

11.
Chromium (Cr) is a well-known human carcinogen and a potential reproductive toxicant, but its contribution to ocean pollution is poorly understood. The aim of this study was to provide a global baseline for Cr as a marine pollutant using the sperm whale (Physeter macrocephalus) as an indicator species. Biopsies were collected from free-ranging whales around the globe during the voyage of the research vessel The Odyssey. Total Cr levels were measured in 361 sperm whales collected from 16 regions around the globe detectable levels ranged from 0.9 to 122.6 μg Cr g tissue−1 with a global mean of 8.8 ± 0.9 μg g−1. Two whales had undetectable levels. The highest levels were found in sperm whales sampled in the waters near the Islands of Kiribati in the Pacific (mean = 44.3 ± 14.4) and the Seychelles in the Indian Ocean (mean = 19.5 ± 5.4 μg g−1). The lowest mean levels were found in whales near the Canary Islands (mean = 3.7 ± 0.8 μg g−1) and off of the coast of Sri Lanka (mean = 3.3 ± 0.4 μg g−1). The global mean Cr level in whale skin was 28-times higher than mean Cr skin levels in humans without occupational exposure. The whale levels were more similar to levels only observed previously in human lung tissue from workers who died of Cr-induced lung cancer. We conclude that Cr pollution in the marine environment is significant and that further study is urgently needed.  相似文献   

12.
A three-dimensional Eulerian hemispheric air pollution model, the Danish Eulerian Hemispheric Model (DEHM), is in development at the National Environmental Research Institute (NERI). The model has been used to study long-range transport of air pollution in the Northern Hemisphere. The present version of the model includes long-range transport of sulphur dioxide (SO2) and particulate sulphate (SC42−. The chemistry in the model is described by a simple linear oxidation of SO2 to SO42−, and the wet deposition of SO2 and SO4 is estimated based on the amount of precipitation, which is calculated from the contents of liquid cloud water (see Christensen, Air Pollution Modelling and its Applicatioons, Vol. X, pp. 119–127, Vol. XI, pp. 249–256, Plenum press, New York; 1995, Ph.D. thesis, National Environmental Research Institute, Denmark). The model has been used to study the air pollution in the Arctic. Results from yr simulation with an analysis of the results is presented: the model results are verified by comparisons, to measurements not only from the Arctic region but also from Europe and Canada. Some examples of episodes in the Arctic including analysis of the meteorological conditions during the episodes are presented. Finally, the model has been used to estimate the contribution from the different source regions on the northern hemisphere to the Arctic sulphur pollution.  相似文献   

13.
This study measured particle size distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in two workplace atmospheres of the sintering grate and rough roll shredder in a sintering plant, and to assess their workers’ health-related exposures. We found that the PCDD/F concentration of the sintering grate (site A = 14.47 pg m−3) was lower than that of the rough roll shredder (site B = 17.20 pg m−3). Particle size distributions of PCDD/Fs were in the form of the unimodal with the mass median aerodynamic diameter (MMAD) of 4.74 μm and 5.23 μm, and geometric standard deviation (σg) of 3.15 and 2.15 for the site A and B, respectively. The above results suggest that the workplace of the site A had a less fraction of coarse particles than that of the site B. The estimated PCDD/F concentrations of the inhalable fraction (11.0 pg m−3) and thoracic fraction (8.89 pg m−3) of the site A were lower than those of the site B (12.4 and 9.39 pg m−3, respectively). But to the contrary the estimated respirable fraction of the site A (5.05 pg m−3) was slightly higher than that of the site B (4.93 pg m−3). Our results clearly indicate the importance to conduct particle size segregating samplings for assessing human PCDD/F exposures.  相似文献   

14.
Y. Xu   《Chemosphere》2001,43(8):1281
The degradation of a common textile dye, Reactive-brilliant red X-3B, by several advanced oxidation technologies was studied in an air-saturated aqueous solution. The dye was resistant to the UV illumination (wavelength λ  320 nm), but was decolorized when one of Fe3+, H2O2 and TiO2 components was present. The decolorization rate was observed to be quite different for each system, and the relative order evaluated under comparable conditions followed the order of Fe2+–H2O2–UV  Fe2+–H2O2 > Fe3+–H2O2–UV > Fe3+–H2O2 > Fe3+–TiO2–UV > TiO2–UV > Fe3+–UV > TiO2–visible light (λ  450 nm) > H2O2–UV > Fe2+–UV. The mechanism for each process is discussed, and linked together for understanding the observed differences in reactivity.  相似文献   

15.
In the present study, the effects of biosorbent Aspergillus niger dosage, initial solution pH and initial Ni(II) concentration on the uptake of Ni(II) by NaOH pretreated biomass of A. niger from aqueous solution were investigated. Batch experiments were carried out in order to model and optimize the biosorption process. The influence of three parameters on the uptake of Ni(II) was described using a response surface methodology (RSM) as well as Langmuir and Freundlich isotherm models. Optimum Ni(II) uptake of 4.82 mg Ni(II) g−1 biomass (70.30%) was achieved at pH 6.25, biomass dosage of 2.98 g L−1 and initial Ni(II) concentration of 30.00 mg L−1 Ni(II). Langmuir and Freundlich were able to describe the biosorption isotherm fairly well. However, prediction of Ni(II) biosorption using Langmuir and Freundlich isotherms was relatively poor in comparison with RSM approaches. The biosorption mechanism was also investigated by using Fourier transfer infrared (FT-IR) analysis of untreated, NaOH pretreated, and Ni(II) loaded A. niger biomass.  相似文献   

16.
Y.F. Rao  W. Chu   《Chemosphere》2009,74(11):1444-1449
The degradation of linuron, one of phenylurea herbicides, was investigated for its reaction kinetics by different treatment processes including ultraviolet irradiation (UV), ozonation (O3), and UV/O3. The decay rate of linuron by UV/O3 process was found to be around 3.5 times and 2.5 times faster than sole-UV and ozone-alone, respectively. Experimental results also indicate overall rate constants increased exponentially with pH above 9.0 while the increase of rate constants with pH below 9 is insignificant in O3 system. All dominant parameters involved in the three processes were determined in the assistant of proposed linear models in this study. The approach was found useful in predicting the process performances through the quantification of quantum yield (rate constant for the formation of free radical HOO from ozone decomposition at high pH), rate constant of linuron with ozone (kO3,LNR), rate constant of linuron with hydroxyl radical (kOH,LNR), and α (the ratio of the production rate of OH and the decay rate of ozone in UV/O3 system).  相似文献   

17.
18.
ABSTRACT

This study compared the first-order frequencies for OH associated with volatile organic compounds (VOCs) and CO (hereafter called OH reactivity with VOCs or CO), the product of the VOC or CO concentration, and their respective kOH value, on an average weekday with that on an average weekend day at a core urban site in Baltimore, MD. The average daytime concentrations were calculated for each of the 55 available Photochemical Assessment Monitoring Station (PAMS) VOCs using data from the Baltimore site. The data were sorted in descending order to highlight the important species based on concentration. The OH reactivity with VOCs was sorted in descending order to identify the important species based on the magnitude of the OH reactivity. A similar process was followed for the OH reactivity with CO. The contribution of the significant species to the weekday/weekend difference in OH reactivity was examined.

The OH reactivity with C5H8 was the largest among the OH reactivity with the PAMS' VOCs and was the same on the weekday and weekend. The weekday/weekend difference in OH reactivity with VOCs was entirely due to differences in concentrations of the anthropogenic VOCs. The OH reactivity with VOCs was 11% larger on the weekday. When OH reactivity with CO was included, the OH reactivity was 13% larger on the weekday.  相似文献   

19.
Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in soil, moss and reindeer dung collected at Ny-Ålesund of the Arctic were measured to investigate their accumulation trends and distribution in the three compartments. Compared with the other regions, the proportions of 2 + 3 ring PAHs to the total PAHs were higher, whereas the proportions of 5 + 6 ring PAHs were lower in the three compartments at Ny-Ålesund. Significant log/log-linear relationship was observed between the sub-cooled liquid vapor pressure and the soil/moss quotient (QSM). The relation was similar to the relationship between the gas/particle partition coefficient (KP) and of PAHs, implying QSM would be a “mirror image” of KP. Excellent log/log-linear relationships were observed between QSM and KOA as well as between the moss/dung quotient (QMD) and KOW. The results presented here indicate the physicochemical properties are suitable for characterizing the distribution of PAHs in soil, moss and reindeer dung.  相似文献   

20.
Within the rotational scheme developed by the Programme to fight the resistance of Simulium damnosum to chemical larvicides, there was an operational gap at discharges between 5 and 70 m3 s−1 for the treatment of rivers where resistance to organophosphates was present. The use of permethrin and carbosulfan was precluded because of risk of environmental impact and, Bacillus thuringiensis ser. H-14 treatments were not envisageable due to cost and logistics constraints. Among the possible complementary groups of larvicides tested, the pseudo-pyrethroids, held promise, because of a mode of action similar to that of pyrethroids, but along with a usually lower toxicity for fish. Etofenprox, one of the pseudo-pyrethroids tested, shows a global detachment of non-target insects in 24 h close to that of pyraclofos, an organo-phosphorus compound (27 against 23%). In laboratory conditions, six times the operational dose which is 0.03 mg l−1 10 min, is needed to cause 50% mortality of Caridina sp. (a small shrimps species) and 30 times this same dose for 95% mortality. For fish species, a safety margin of 400–800 times the operational dose is observed for Oreochromis niloticus and 200–400 times for Tilapia zillii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号