首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We assessed the extent to which constituents of PM2.5 (transition metals, sodium, chloride) contribute to the ability to generate hydroxyl radicals (OH) in vitro in PM2.5 sampled at 20 locations in 19 European centres participating in the European Community Respiratory Health Survey. PM2.5 samples (n = 716) were collected on filters over one year and the oxidative activity of particle suspensions obtained from these filters was then assessed by measuring their ability to generate OH in the presence of hydrogen peroxide. Associations between OH formation and the studied PM constituents were heterogeneous. The total explained variance ranged from 85% in Norwich to only 6% in Albacete. Among the 20 centres, 15 showed positive correlations between one or more of the measured transition metals (copper, iron, manganese, lead, vanadium and titanium) and OH formation. In 9 of 20 centres OH formation was negatively associated with chloride, and in 3 centres with sodium. Across 19 European cities, elements which explained the largest variations in OH formation were chloride, iron and sodium.  相似文献   

2.
The photolysis of was studied for the removal of acetic acid in aqueous solution and compared with the H2O2/UV system. The radicals generated from the UV irradiation of ions yield a greater mineralization of acetic acid than the OH radicals. Acetic acid is oxidized by radicals without significant formation of intermediate by-products. Increasing system pH results in the formation of OH radicals from radicals. Maximum acetic acid degradation occurred at pH 5. The results suggest that above this pH, competitive reactions with the carbon mineralized inhibit the reaction of the solute with and also OH radicals. Scavenging effects of two naturally occurring ions were tested; in contrast to ions, the presence of Cl ions enhances the efficiency of the /UV process towards the acetate removal. It is attributed to the formation of the Cl radical and its great reactivity towards acetate.  相似文献   

3.
The ability of free ferrous ion activated persulfate (S2O82−) to generate sulfate radicals (SO4) for the oxidation of trichloroethylene (TCE) is limited by the scavenging of SO4 with excess Fe2+ and a quick conversion of Fe2+ to Fe3+. This study investigated the applicability of ethylene-diamine-tetra-acetic acid (EDTA) chelated Fe3+ in activating persulfate for the destruction of TCE in aqueous phase under pH 3, 7 and 10. Fe3+ and EDTA alone did not appreciably degrade persulfate. The presence of TCE in the EDTA/Fe3+ activated persulfate system can induce faster persulfate and EDTA degradation due to iron recycling to activate persulfate under a higher pH condition. Increasing the pH leads to increases in pseudo-first-order-rate constants for TCE, S2O82− and EDTA degradations, and Cl generation. Accordingly, the experiments at pH 10 with different EDTA/Fe3+ molar ratios indicated that a 1/1 ratio resulted in a remarkably higher degradation rate at the early stage of reaction as compared to results by other ratios. Higher persulfate dosage under the EDTA/Fe3+ molar ratio of 1/1 resulted in greater TCE degradation rates. However, increases in persulfate concentration may also lead to an increase in the rate of persulfate consumption.  相似文献   

4.
5.
6.
Han SK  Hwang TM  Yoon Y  Kang JW 《Chemosphere》2011,84(8):1095-1101
The generation of reactive species in an aqueous goethite suspension, under room light and aeration conditions, was investigated using the electron paramagnetic resonance (EPR) technique employing spin trap agents. The trap reagents, including 5,5-dimethylpyrroline N-oxide (DMPO) and 2,2,6,6-tetramethylpiperidine (TEMP), were used for the detection of OH radicals (OH) and singlet oxygen (1O2), respectively. On the addition of DMPO to the goethite suspended solution, a DMPO-OH adduct was formed, which was not decreased, even in the presence of the OH scavenger, mannitol. This result implied a false positive interpretation from the DMPO-OH EPR signal. In the presence of TEMP reagent, a TEMP-O signal was detected, which was completely inhibited in the presence of the singlet oxygen scavenger, sodium azide. With both DMPO-OH and TEMP-O radicals in the presence and absence of radical scavengers, singlet oxygen was observed to be the key species formed in the room-light sensitized goethite suspension. In the goethite/H2O2 system; however, both OH and singlet oxygen were generated, with significant portions of DMPO-OH resulting from both OH and singlet oxygen. In fact, the DMPO-OH resulting from OH should be carefully calculated by correcting for the amount of DMPO-OH due to singlet oxygen. This study reports, for the first time, that the goethite suspensions may also act as a natural sensitizer, such as fulvic acids, to form singlet oxygen.  相似文献   

7.
Ren X  Sun Y  Wu Z  Meng F  Cui Z 《Chemosphere》2012,88(1):39-48
The initial degradation mechanisms of OH and 4-chloro-2-methylphenoxyacetic acid (MCPA) including molecular form and anionic form are studied at the MPWB1K/6-311+G(3df, 2p)//MPWB1K/6-31+G(d, p) level. Possible reaction pathways of H-atom abstraction and OH addition are considered in detail. By result comparison analysis, it is found that the reaction mechanisms for OH and two forms of MCPA are different, and most reactions for anionic MCPA are easier than those for molecular MCPA. For H-atom abstraction reactions, the calculated energies show that OH abstracting H-atom from -CH3 group of molecular MCPA is the most kinetically favorable process; the potential energy surface for anionic MCPA indicates that H-atom in -CH2 group is slightly easier to be abstracted than that in -CH3 group. For OH addition reactions, the addition of OH to the C1 site is the initial step for molecular MCPA and the predominant product is 4-chloro-2-methylphenol (denoted P3), while the C4 site is the most reactive site for anionic MCPA and the primary product results from the hydroxylation of the aromatic ring, which is in good agreement with the experimental observation. In additional, results from PCM calculations show that most reactions in water phase are more kinetically favorable than those in gas phase, though the mechanisms discussed above will not be changed.  相似文献   

8.
Dimethyl disulphide (DMDS) removal was investigated in a compact scrubber (hydraulic residence time ≈20 ms), composed of a wire mesh packing structure where liquid and gas flow at co-current and high gas superficial velocity (>12 m s−1). In order to regenerate the scrubbing liquid and to maintain a driving force in the scrubber, ozone and hydrogen peroxide were added to water since they allow the generation of nonselective and highly reactive species, hydroxyl radicals HO. Three ways of reagent distribution were tested. The influence of several parameters (liquid flow rate(s), ozone flow rate, pH and reagent concentrations) was investigated. The best configuration was obtained when ozone is transferred in the scrubbing liquid before introduction at the top of the scrubber simultaneously with the hydrogen peroxide solution, allowing to generate hydroxyl radical in the scrubber. With this configuration, DMDS removal could be increased from 16% with water to 34% at the same gas and liquid flow rates in the scrubber showing the potentiality of advanced oxidation process.  相似文献   

9.
10.
11.
12.
13.
The photolysis of caffeine was studied in solutions of fulvic acid isolated from Suwannee River, GA (SRFA) and Old Woman Creek Natural Estuarine Research Reserve, OH (OWCFA) with different chemical amendments (nitrate and iron). Caffeine degrades slowly by direct photolysis (>170 h in artificial sunlight), but we observed enhanced photodegradation in waters containing the fulvic acids. At higher initial concentrations (10 μM) the indirect photolysis of caffeine occurs predominantly through reaction with the hydroxyl radical (OH) generated by irradiated fulvic acids. Both rate constant estimates based upon measured OH steady-state concentrations and quenching studies using isopropanol corroborate the importance of this pathway. Further, OH generated by irradiated nitrate at concentrations present in wastewater effluent plays an important role as a photosensitizer even in the presence of fulvic acids, while the photo-Fenton pathway does not at neutral or higher pH. At lower initial concentrations (0.1 μM) caffeine photolysis reactions proceed even more quickly in fulvic acid solutions and are influenced by both short- and long-lived reactive species. Studies conducted under suboxic conditions suggest that an oxygen dependent long-lived radical e.g., peroxyl radicals plays an important role in the degradation of caffeine at lower initial concentration.  相似文献   

14.
Y. Xu   《Chemosphere》2001,43(8):1281
The degradation of a common textile dye, Reactive-brilliant red X-3B, by several advanced oxidation technologies was studied in an air-saturated aqueous solution. The dye was resistant to the UV illumination (wavelength λ  320 nm), but was decolorized when one of Fe3+, H2O2 and TiO2 components was present. The decolorization rate was observed to be quite different for each system, and the relative order evaluated under comparable conditions followed the order of Fe2+–H2O2–UV  Fe2+–H2O2 > Fe3+–H2O2–UV > Fe3+–H2O2 > Fe3+–TiO2–UV > TiO2–UV > Fe3+–UV > TiO2–visible light (λ  450 nm) > H2O2–UV > Fe2+–UV. The mechanism for each process is discussed, and linked together for understanding the observed differences in reactivity.  相似文献   

15.
16.
17.
Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L−1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m−1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and rejection follows the order LFC-1 (>90%) > MX07 (25–95%)  ESNA (30–90%) > GM (3–47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and rejection follows the order CaCl2 < KCl  K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding (71–74%) than the ESNA NF membrane (11–56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (, , and ) the rejection (38–56%) is fairly proportional to the ri,s/rp ratio (0.32–0.62) for the ESNA membrane.  相似文献   

18.
The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2 = 69%), as well as the 3H (R2 = 79%) and 3He (R2 = 76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.  相似文献   

19.
The effluents of wastewater treatment plants, usually directly emitted to the environment, often contain the anti-inflammatory drug diclofenac (DCF). The paper investigates DCF elimination using irradiation technology. Hydroxyl radical and hydrated electron reactive intermediates resulting from water radiolysis effectively degrade DCF and strongly reduce the toxicity of the solutions. OH attaches to one of the rings of DCF, and hydroxylated molecules, 2,6-dichloroaniline and quinoid type compounds are the products. Hydrated electron adds to the chlorine atom containing ring, in the reaction quinoid type compounds and 4-chloroacridine form. At a 0.1 mM DCF concentration, a ∼1 kGy absorbed dose is needed for the degradation of DCF molecules, but for mineralization of the products (in presence of O2) an order of magnitude higher dose is required.For irradiation of wastewater after biological treatment a ∼1 kGy dose is suggested. At this dose DCF and other drugs or metabolites present at μg L−1 level are eliminated together with microorganism deactivation.  相似文献   

20.
Wang W  Qu Y  Yang B  Liu X  Su W 《Chemosphere》2012,86(4):376-382
Pyrite is a common mineral at many mining sites. In this study, the mineral pyrite was studied as a Fenton-like reagent for environmental concerns. We selected lactate as a model target molecule to evaluate the Fenton-like catalytic efficiency of pyrite upon organic oxidation. A complete set of control experiments in both aerobic and anaerobic atmospheres unequivocally established that the pyrite in aqueous solution could spontaneously in situ generate OH and H2O2, serving as a Fenton-like reagent to catalyze the oxidation of lactate to pyruvate with no need for additional H2O2. We called it the pyrite-only Fenton-like (PF) reagent. Monitoring concentration changes of lactate and pyruvate with the time indicated that the pyrite mediated the favorable pyruvate formation at pH 4.5, 60 °C, under air atmosphere. The PF reaction could be stimulated by visible light illumination. Under the optimum conditions, up to 50% of lactate was degraded within 10 d. The results suggest that pyrite and its Fenton-like processes may be potentially practical in wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号