首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

A field-scale tracer test was conducted to evaluate in-situ ventilation rates in a major collector sewer. The sewer under study was ~11 km long and ranged from 0.61 to 2.1 m in diameter. For the purposes of the tracer testing, the collector was divided into four reaches, each of which was tested individually. The tracer test involved injecting a measured volume of CO gas into a manhole over a short time period. CO concentrations were then measured in the collector headspace at selected manholes along the length of the reach.

The technique employed successfully measured average headspace velocities over extended lengths of the collector. In a section that had a relatively stagnant headspace, ~1.1 km of sewer could be evaluated, with substantial tracer loss attributed to losses to manholes. In a section of the sewer with elevated headspace velocities, a section ~7.0 km long was successfully tested with one injection of tracer gas. The velocities observed in the collector varied substantially with time and location in the collector. The lowest velocities measured were in the upstream sections, with a minimum observed value of 3.8 m/min. The highest velocities were observed in the downstream sections, with a maximum value of 31.5 m/min. The presence of a substantial drop structure appeared to reduce the headspace velocity in the upstream reach. In general, there was an increasing trend in gas-phase flows with distance along the length of the collector. Flows at the discharge end of the collector were almost 2 orders of magnitude greater than those at the beginning.  相似文献   

2.
Hydrogen sulfide adsorption and oxidation by corroding concrete surfaces at different air-flows were quantified using a pilot-scale sewer reactor. The setup was installed in an underground sewer research station with direct access to wastewater. Hydrogen sulfide gas was injected into the headspace of the sewer reactor once per hour in peak concentrations of approximately 500 ppmv. The investigated range of sewer air-flows was representative for natural ventilated sewer systems, and covered both laminar and turbulent conditions. The experiments demonstrated a significant effect of sewer air-flow on the kinetics of hydrogen sulfide removal from the sewer headspace. From the lowest to the highest air-flow investigated, the rate of adsorption and oxidation increased more than threefold. At all air-flows, the reaction kinetics followed a simple n-th order rate equation with a reaction order of 0.8. The effect of air-flow on hydrogen sulfide adsorption and oxidation kinetics was quantified by a simple empirical equation.  相似文献   

3.
A field study of triclosan loss rates in river water (Cibolo Creek, TX)   总被引:1,自引:0,他引:1  
Triclosan (TCS) is an anti-microbial agent used in down-the-drain consumer products. Following sewage treatment some of the triclosan will enter receiving waters. This study was designed to determine the die-away rate of triclosan released into a river as part of the sewage treatment plant effluent matrix. The study was conducted in Cibolo Creek, a moderate sized stream (discharge approximately 0.1 m(3)s(-1)) located in South Central Texas. Triclosan was analyzed from samples collected upstream of the sewage treatment plant, the sewage treatment plant effluent, and the river downstream from the effluent discharge. The first-order loss rate of parent triclosan from the water column was calculated from measured data (0.06 h(-1)) and this rate corresponded to a 76% reduction in triclosan over an 8 km river reach below the discharge. Mathematical modeling indicated that sorption and settling accounted for approximately 19% of total triclosan loss over 8 km. When removing sorption and settling, the remaining amount of triclosan had an estimated first-order loss rate of 0.25 h(-1). This loss rate was presumably due to other processes such as biodegradation and photolysis. These data show that loss of parent triclosan from the water column is rapid. Additional data are needed to fully document loss mechanisms.  相似文献   

4.
Wastewater quality characteristics in terms of biomass, its substrates, and the corresponding kinetic and stoichiometric parameters were determined based on 109 wastewater samples originating from five different campaigns in four different sewer networks. Quality parameters were determined by model calibration of measured wastewater oxygen uptake rates applying a model that describes the aerobic breakdown of wastewater organic matter. Thereafter, the distributions of the parameters were analyzed. Two of the five datasets were obtained at the upstream end of a five-km-long, intercepting gravity sewer. For each of these upstream wastewater samples, downstream samples were collected with a delay corresponding to the residence time. The upstream distributions of the wastewater composition were used as boundary conditions for a Monte Carlo simulation. The calculated downstream distributions were compared to the measured downstream distributions and good agreement was observed.  相似文献   

5.
The formation and fate of sulfide in a force main and a downstream-located gravity sewer were investigated in an extensive field study. Sulfide formation in the force main was significant. However, during 14 minutes of transport in the gravity sewer, the sulfide concentration decreased 30%, on average. An application of a conceptual sewer process model for simulating the formation and fate of sulfide was demonstrated. Overall, the model predicted that approximately 90% of the decrease of the sulfide concentration in the gravity sewer was the result of sulfide oxidation and that only a small fraction entered the sewer atmosphere, causing odor and corrosion. Even so, the model predicted concrete corrosion rates of up to 1.2 mm/y in the gravity sewer section.  相似文献   

6.
A method was developed for determination of horizontal gas transport and ventilation in gravity sewers. This was achieved by changing the composition of the sewer atmosphere by pulse injection of oxygen gas and subsequently measuring the oxygen concentration in a downstream manhole. Conventional tracer techniques may require sampling and may also affect the environment. The method developed is simple, based on direct monitoring and without environmental or toxic effects. The method was developed based on measurements in an intercepting gravity sewer. The horizontal gas transport processes were quantified by measuring the velocity and dispersion of the gas in the sewer atmosphere. Based on 54 measurements, the gas velocity was found to vary between 0.05 and 0.22 m/s. The coefficients of dispersion were calculated to be in the range 0.05 to 1.1 m2/s. Climatic conditions did not significantly influence the gas phase transport.  相似文献   

7.
At the Centre for Environmental Research Leipzig-Halle (UFZ) research site in Zeitz, Germany, benzene contaminates the lower of two aquifers with concentrations of up to 20 mg/l. Since the benzene plume has a minimum length of approximately 1 km, enhanced natural attenuation measures are being considered as a remediation strategy. This study describes the performance and evaluation of a multi-species reactive tracer test using the tracers fluorescein and bromide as conservative tracers and toluene as reactive tracer. Sampling was performed over a period of six months using a detailed network of multilevel sampling wells. Toluene was only slightly retarded in comparison to bromide, whereas fluorescein was retarded considerably stronger. Therefore, it was not possible to use fluorescein as an in situ tracer for the determination of groundwater velocities. The ionic nature of fluorescein is assumed to be the major reason for its retardation. The results show that the infiltration conditions were suitable to produce a wide spreading of the tracer front along the full thickness of the aquifer. Thus, a large aquifer volume can be treated in future enhanced bioremediation measures. The total quantity of infiltrated toluene (24 l) was degraded under sulfate-reducing conditions over a flow path of 50 m. Benzylsuccinate was identified as a metabolite of toluene degradation under sulfate-reducing conditions at this site. The modelling results show that toluene degradation was described more accurately using Monod kinetics than first-order kinetics. Since toluene was only slightly retarded in comparison to bromide, sorption and desorption processes were considered to be negligible.  相似文献   

8.
To investigate whether wind is a significant driving force in the diffusion of CO and CH4 from the atmosphere into soil, we measured the concentrations of these two gases at two heights above a temperate grass field in Japan and estimated their deposition velocities using micrometeorological techniques. The concentrations were inversely correlated with wind speed, indicating that the local concentrations were influenced by ground sources. The CO and CH4 concentrations at 0.33 m were usually lower than those at 1.3 m. Although nocturnal data are suspected to be non-stationary, by selecting several periods when the changes of the concentrations were small but larger than analytical precision, we obtained a CO velocity of 2.9 and 3.9×10−2 cms−1, agreeing with a CO deposition velocity, 3.4×10−2 cms−1, obtained by applying a method using CO2 as a tracer. The CH4 influx obtained by the method using CO2 as a tracer was 13 ngm−2 s−1. The ranges of the CO deposition velocity and CH4 influx were similar to those obtained in previous studies in grassfields and in a nearby arable field using a closed-chamber technique. This shows that light winds do not greatly accelerate CO and CH4 uptake by soil.  相似文献   

9.
Measurements of groundwater velocity in discrete rock fractures   总被引:1,自引:0,他引:1  
Estimating groundwater velocity in fracture networks using a Darcy or cubic law calculation is complicated by the wide distribution of fracture aperture often found in these systems and by the difficulty in measuring hydraulic head in discrete fracture features. Although difficult to conduct in a fractured rock setting, the point dilution method can be utilized to collect direct measurements of groundwater velocity in individual fractures. To compare measured against calculated velocities, more than 100 point dilution experiments were conducted within a 35 x 35 m area of a single fracture and in discrete fracture features within a fracture network at a larger scale. The dilution experiments were conducted by isolating a fracture feature in a borehole, measuring the hydraulic aperture, and measuring the decay of an injected tracer due to the advective groundwater flux across the fracture. Groundwater velocity was estimated using the hydraulic aperture and the rate of decay of the injected tracer. Estimates of the local hydraulic gradient were calculated via the cubic law using the velocity estimate and the hydraulic aperture. The results of the tests conducted in the single fracture show variable (1 to 33 m/day) but on average higher velocities in comparison to that measured during a natural gradient tracer experiment conducted previously (in which the effects of matrix diffusion were accounted for) and to that which would be calculated using the cubic law. Based on these results, it was determined that the best estimate of the average groundwater velocity, at the scale of the measurement area used for the cubic law calculations, could only be obtained using the largest apertures in the aperture distribution. Variability of the velocity measurements was also observed over time. Increases in velocity were attributed to the effect of rainfall although concurrent increases in hydraulic gradient were not detected (likely within the tolerance of the measuring devices). The groundwater velocities measured in the fracture network varied over a wider range than at the scale of the single fracture (from 2 to 388 m/day). No correlation, however, was observed between the size of the fracture aperture and measured velocity.  相似文献   

10.
A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2, and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park. The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag "local" sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65-86%) and a small fraction (19-31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

11.
Hourly indoor and outdoor fine particulate matter (PM2.5), organic and elemental carbon (OC and EC, respectively), particle number (PN), ozone (O3), carbon monoxide (CO), and nitrogen oxide (NOx) concentrations were measured at two different retirement communities in the Los Angeles, CA, area as part of the Cardiovascular Health and Air Pollution Study. Site A (group 1 [G1]) was operated from July 6 to August 20, 2005 (phase 1 [P1]) and from October 19 to December 10, 2005 (P2), whereas site B (group 2 [G2]) was operated from August 24 to October 15, 2005 (P1), and from January 4 to February 18, 2006 (P2). Overall, the magnitude of indoor and outdoor measurements was similar, probably because of the major influence of outdoor sources on indoor particle and gas levels. However, G2 showed a substantial increase in indoor OC, PN, and PM2.5 between 6:00 and 9:00 a.m., probably from cooking. The contributions of primary and secondary OC (SOA) to measured outdoor OC were estimated from collected OC and EC concentrations using EC as a tracer of primary combustion-generated OC (i.e., "EC tracer method"). The study average outdoor SOA accounted for 40% of outdoor particulate OC (40-45% in the summer and 32-40% in the winter). Air exchange rates (hr(-1)) and infiltration factors (Finf; dimensionless) at each site were also determined. Estimated Finf and measured particle concentrations were then used in a single compartment mass balance model to assess the contributions of indoor and/or outdoor sources to measured indoor OC, EC, PM2.5, and PN. The average percentage contributions of indoor SOA of outdoor origin to measured indoor OC were approximately 35% (during G1P1 and G1P2) and approximately 45% (for G2P1 and G2P2). On average, 36% (G2P1) to 44% (G1P1) of measured indoor OC was composed of outdoor-generated primary OC.  相似文献   

12.
The goal of this study is to investigate the impact of deforestation on ozone dynamics and deposition in the Brazilian Amazon basin. This goal is accomplished through i) analyses of ozone levels and deposition rates at a deforested site during the rainy season; and ii) comparisons of these data with similar information derived at a forest. At the pasture site maximum ozone mixing ratios reach 20 parts per billion on a volume basis (ppbv) but about 6 ppbv prevail over the forest. Maximum ozone deposition velocities for pastures can reach 0.7 cm s-1, which is about threefold lower than values derived for forests. Combining ozone abundance and deposition velocities, pasture maximum ozone fluxes reach approximately 0.2 microgram (ozone) m-2 s-1. This flux represents approximately 70% of the deposition rates measured over the forest. Hence, this study suggests that conversion of rainforests to pastures could lead to a net reduction (30%) in the ozone sink in the Amazon.  相似文献   

13.
Instantaneous releases of sulfur hexafluoride tracer were carried out as part of the Joint Urban 2003 field campaign in Oklahoma City. Data from 10 fast-response tracer samplers were used to examine the crosswind and along-wind spread of the tracer, the decay of tracer concentrations, and the retention of tracer within approximately 1 km of the release locations. The time variation of the median values of the tracer concentrations, normalized by the peak value observed at a given sampler, could be approximately described by an exponential decay with characteristic decay times on the order of 1–2 min. The longer times were found for early morning releases and the shorter times were associated with later morning or afternoon releases, suggesting that atmospheric stability or the depth of the mixed layer may affect puff dispersion even in urban environments. The median retention times required for 99% of the exposure to be realized at a given location were found to be correlated reasonably well with the median decay times. These characteristic time scales should be regarded as lower limits for concentration decay because the analysis excluded a number of anomalous cases in which the decaying concentrations exhibited an extended tail that indicated a very slow ventilation rate. The median values of the along-wind dispersion parameter σx grouped into downwind distance ranges can be described by a linear variation with distance with an initial “hold up” contribution due to building effects of about 30–45 m, but there are considerable variations about this relationship. Downwind 0.5–1 km from the release point the lateral puff dispersion (σy) was roughly 70% of the along-wind dispersion.  相似文献   

14.
Abstract

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2 , and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park.

The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag “local” sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65–86%) and a small fraction (19–31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

15.
Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 microg/m3 were higher than DPMtp (0.91 microg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 microg/m3, respectively) as compared with open (0.44 and 1.3 microg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 microg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 microg/m3 for DPMtp and 0.05 microg/m3 for PMck.  相似文献   

16.
Two natural-gradient pulse tracer tests were conducted in a petroleum-contaminated aquifer to evaluate the potential for benzene, toluene, ethylbenzene, and xylenes (BTEX) biodegradation under enhanced nitrate-reducing conditions. Addition of nitrate resulted in loss of toluene, ethylbenzene, and m,p-xylenes (TEX) after an initial lag period of approximately 9 days. Losses of benzene were not observed over the 60-day monitoring period. Tracer breakthrough curves (BTCs) were analyzed to derive transport and biodegradation parameters, including advective velocities, retardation factors, dispersion coefficients, biodegradation rate constants, and nitrate utilization ratios. Using the parameters derived from the BTC analysis, numerical simulations of one of the tracer experiments were conducted using BIONAPL/3D [Molson, J., BIONAPL/3D User Guide, A 3D Coupled Flow and Multi-Component Reactive transport model. University of Waterloo, Waterloo, Ontario, Canada]. Simulations using the BTC-derived transport and biodegradation parameters successfully reproduced benzene, TEX, and nitrate concentrations measured during the tracer experiment. Comparisons of observed and simulated nitrate concentrations indicate that the mass ratio of nitrate-N utilized to TEX degraded increased over time during the experiment, reaching values many times that expected based on stoichiometry of TEX oxidation coupled to nitrate reduction. Excess nitrate loss is likely due to oxidation of other organics in addition to TEX.  相似文献   

17.
利用五孔探针系统对直筒式旋风静电除尘器模型的三维流场进行了测定与分析.结果表明:随着入口风速、供电电压增加,旋风静电除尘器内气流的切向和径向速度分别增加,各截面轴向速度沿半径的分布基本相似;与旋风除尘器相比,旋风静电除尘器内气流的切向速度和径向速度的变化更为平缓,入口风速为8.5 m/s时,在0.3~0.5倍简体直径时,切向速度达最大.  相似文献   

18.
Data are lacking on human exposure to air pollutants occurring in ground-level outdoor environments within a few meters of point sources. To better understand outdoor exposure to tobacco smoke from cigarettes or cigars, and exposure to other types of outdoor point sources, we performed more than 100 controlled outdoor monitoring experiments on a backyard residential patio in which we released pure carbon monoxide (CO) as a tracer gas for continuous time periods lasting 0.5–2 h. The CO was emitted from a single outlet at a fixed per-experiment rate of 120–400 cc min?1 (~140–450 mg min?1). We measured CO concentrations every 15 s at up to 36 points around the source along orthogonal axes. The CO sensors were positioned at standing or sitting breathing heights of 2–5 ft (up to 1.5 ft above and below the source) and at horizontal distances of 0.25–2 m. We simultaneously measured real-time air speed, wind direction, relative humidity, and temperature at single points on the patio. The ground-level air speeds on the patio were similar to those we measured during a survey of 26 outdoor patio locations in 5 nearby towns. The CO data exhibited a well-defined proximity effect similar to the indoor proximity effect reported in the literature. Average concentrations were approximately inversely proportional to distance. Average CO levels were approximately proportional to source strength, supporting generalization of our results to different source strengths. For example, we predict a cigarette smoker would cause average fine particle levels of approximately 70–110 μg m?3 at horizontal distances of 0.25–0.5 m. We also found that average CO concentrations rose significantly as average air speed decreased. We fit a multiplicative regression model to the empirical data that predicts outdoor concentrations as a function of source emission rate, source–receptor distance, air speed and wind direction. The model described the data reasonably well, accounting for ~50% of the log-CO variability in 5-min CO concentrations.  相似文献   

19.
In the field phases of the European Tracer EXperiment (ETEX), an inert tracer was released for 12 h into the atmosphere and samples taken at several locations downwind. During the same time, several Constant Volume Balloons (CVB) (10 and 6 for ETEX first and second release, respectively) were launched into different altitudes and followed as far as 21–188 km, to indicate the initial dispersion directions of the tracer puff. A model simulating the CVB behaviour in hydrostatic meso-scale model forecasts is applied to ETEX data to demonstrate its capability to predict the tracer puff mean axis over long distances (−2000 km). CVB model results are first compared to air parcels trajectories and 2D (i.e. isentropic, isobaric and isodensity) trajectories. Then they are compared to the measured CVB trajectories and finally to the tracer puff trajectories. As expected, the CVB model and isodensity model trajectories are found to be identical. The 16 CVBs calculated trajectories nearly overlap the real ones over 21–188 km with mean absolute horizontal transport deviations less than 20 km (average value of 8.2 km). The corresponding relative transport deviations are less than 45% with an average value of 20.6%. Better predictions are obtained for the ETEX second release. During the 60 h following ETEX’s first release start, the simulated CVBs are mainly found in the area of the maximum surface concentrations of the released tracer, up to 2000 km. Up to 36 h after ETEX second tracer release start, the simulated CVB trajectories predict well the mean axis of the tracer puff, but failed later.  相似文献   

20.
Near-roadway ambient black carbon (BC) and carbon monoxide (CO) concentrations were measured at two schools adjacent to a freeway and at an urban background school 2 km from the freeway to determine the change in concentrations attributable to vehicle emissions after the three-lane expansion of U.S. Highway 95 (US 95) in Las Vegas, Nevada. Between summer 2007 and summer 2008, average weekday small-vehicle volume increased by 40% ± 2% (standard error). Average weekday large-vehicle volume decreased by 17% ± 5%, due to a downturn in the economy and an associated decline in goods movement. Average vehicle speed increased from 58 to 69 mph, a 16% ± 1% increase. The authors compared BC and CO concentrations in summer 2007 with those in summer 2008 to understand what effect the expansion of the freeway may have had on ambient concentrations: BC and CO were measured 17 m north of the freeway sound wall, CO was measured 20 m south of the sound wall, and BC was measured at an urban background site 2 km south of the freeway. Between summer 2007 and summer 2008, median BC decreased at the near-road site by 40% ± 2% and also decreased at the urban background site by 24% ± 4%, suggesting that much of the change was due to decreases in emissions throughout Las Vegas, rather than only on US 95. CO concentrations decreased by 14% ± 2% and 10% ± 3% at the two near-road sites. The decrease in BC concentrations after the expansion is likely due to the decrease in medium- and heavy-duty-vehicle traffic resulting from the economic recession. The decrease in CO concentrations may be a result of improved traffic flow, despite the increase in light-duty-vehicle traffic.
ImplicationsMonitoring of BC and CO at near-road locations in Las Vegas demonstrated the impacts of changes in traffic volume and vehicle speed on near-road concentrations. However, urban-scale declines in concentrations were larger than near-road changes due to the impacts of the economic recession that occurred contemporaneously with the freeway expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号