首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
Simulation of a process by means of physical models at a reduced scale is an essential tool in many application, allowing to perform a large number of experimental runs, so as to obtain a quantitative representation of the involved phenomena, at relatively low cost. Some difficulties can arise when the mathematical model derived from the simulation is applied to a real scale problem, in that the scaling of some empirical coefficients with the system size is not obvious at all. As fluid barrier scaling is a difficult task, still not deeply investigated in the scientific literature, the focus of this study is to translate knowledge from research on this topic into practice for industrial application. Following an extensive and accurate experimental work in wind tunnel, the main parameters determining the effectiveness of containment, absorption and dilution of chlorine releases were determined and a mathematical model is developed. In order to frame proper scale-up strategies, the most important result of this study rests on the explicit formulae giving, as a function of the aforesaid parameters, the single pass efficiency, the global absorption efficiency, and the toxic gas concentration downwind the barrier. In the far field, the gas concentration is practically determined only by the rate of atmospheric dispersion of the mass flow-rate of gas escaping the abatement. The absorption efficiencies are related to the drop size and to the mass transfer coefficients in the gas and liquid phases. The mean drop diameter plays an essential role in the absorption efficiency, since it simultaneously acts on air entrainment, interfacial surface and mass transfer coefficient in the gas phase. The evaluation of the mitigation effect for an industrial installation requires the scaling of the entrainment coefficient experimentally determined from wind tunnel testing. All the scaling criteria needed for adapting the proposed model to the design of a spray curtain suitable for the protection from a chlorine release, are amply discussed presenting some carefully designed simulations. Owing to its rather general structure, the model can be applied to different gaseous releases and/or absorbing solutions, provided that proper values of the parameters related with the chemical and physical absorption of the involved substances be theoretically or experimentally obtained in advance.  相似文献   

2.
Toxic gas leakage in a tank area can have catastrophic consequences. Storage tank leakage location (particularly for high leakage) and downwind storage tanks potentially influence gas diffusion in tank areas. In this study, we developed a numerical and experimental method to investigate the impact of a high leakage location and downwind storage tank on gas diffusion based on three (1.05H, 0.90H, and 0.77H, H was the tank height, 22m) leakage field experiments on the leeward side of storage tank, which have been not conducted before. The experiments revealed an unexpected phenomenon: the maximum ground concentration first decreased and then increased with increasing leakage height. The simulations illustrated that the differences in micrometeorological conditions caused the maximum ground concentration of gas emitted from the roof to be higher than that emitted from the tank wall near the storage tank height. The downwind storage tank 1) had little influence on the entire diffusion direction but altered the local diffusion pattern; 2) reduced the maximum ground concentration (∼18.7%) and the distance from the emission source (approximately a storage tank diameter); and 3) had strong influences on the concentration, velocity, turbulence, and pressure on the leeward side. The concentration negatively correlated with the velocity, pressure, and turbulence in the middle of the two storage tanks on wind centerline. Our results can improve understanding of gas dispersion in tank areas and provide references for mitigating loss and protecting lives during emergency response processes.  相似文献   

3.
Preparedness of emergency evacuation for the leakage of toxic substances in chemical plants is very important in order to reduce damage. In order to implement an emergency evacuation properly, it is necessary to comprehensively and concretely determine the conditions of the leakage and atmospheric conditions and predict the consequences of the dispersed gases. Repeated training for emergencies is also essential. In order to realize effective evacuation, a prediction model of the evacuation area that anyone can use to obtain the same results both accurately and promptly is developed in the present study. The prediction model is designed such that the wind speed and atmospheric conditions are automatically set, and the leakage rate is the only input parameter, so that anyone can use the model easily. In addition, the model can also predict the atmospheric parameters for up to 3 h and can calculate the evacuation distance so that smooth evacuation can be achieved for changing atmospheric conditions. Finally, the evacuation area is defined by statistically analysed wind fluctuations, and a series of emergency evacuation measures is implemented.  相似文献   

4.
有毒重气在倾斜表面扩散的研究   总被引:4,自引:2,他引:4  
为了研究有毒重气泄漏后在平面和斜面上的扩散情况,根据Kunsch和Webber提出的重气在倾斜表面上的扩散模型,在没有考虑有风的情况下,对氯气气云在倾斜表面上的等温扩散进行了计算,得出了氯气气云扩散时间、扩散范围与浓度的相互关系,评估了氯气扩散的危害程度.对计算结果与平面盒子模型结果比较发现,氯气在不同角度的斜面上和平面上的扩散速度和浓度变化有着显著的差异.得到的氯气在不同倾斜角度坡面的扩散状况查询图,对评估倾斜表面的重气扩散具有一定的意义,并且能够为管理和应急工作提供依据.  相似文献   

5.
Hurricane as one of the most destructive natural hazards can make a devastating impact on the industrial equipment, especially atmospheric storage tanks, leading to the release of stored chemicals and disastrous safety and environmental issues. These catastrophic consequences are caused not only by strong winds but also by the torrential rainfall and inundating floods. The objective of this study is to present a risk-based methodology for assessing and reducing the vulnerability of atmospheric storage tanks to hurricanes. Considering the shell buckling, flotation, sliding, and roof sinking as dominant failure modes of atmospheric storage tanks during hurricanes, Bayesian network (BN) has been employed to combine the failure modes while considering their conditional dependencies. The probability updating feature of the developed BN was employed to indicate that the flood is the most critical hazard during hurricanes while the impact of wind and rainfall cannot be neglected. Extending the developed BN to an influence diagram, the cost-benefit filling of storage tanks with water prior to the advent of hurricanes was shown as a viable measure for reducing the damage probability. The results show that the proposed methodology can be used as an effective decision support tool for assessing and reducing the vulnerability of atmospheric storage tanks to natural hazards.  相似文献   

6.
This paper deals with the consequence assessment of an open fire incident in a Pesticides Storage Facility. Consequences are mainly caused by the atmospheric dispersion of toxic substances produced during the fire and transported downwind to considerable distance. An integrated methodology, based on Computational fluid Dynamics (CFD) techniques and the dimensionless buoyancy flux number, F/U3L, a parameter that can be associated with the flow characteristics, taking advantage of the dynamic similarity of the flow domain, is presented and used for the simulation of the plume dispersion.Rise to the present study gave a real incident, which happened in northern Greece in the beginning of 2004 and constituted the basis for the development of the accident scenarios eventually studied. Owing to the uncertainty in the estimation of source term strength and specifically of the magnitude of the heat released during the incident together with the variation in wind velocity, a parameterization of these two quantities has been applied. Four typical accident scenarios have been designed and studied.It is concluded that the proposed methodology allows for the calculation of the ground level concentration of any non-reactive substance dispersed in the atmosphere and constitutes a complementary approach in the consequence analysis of accidents in agrochemical (pesticides) plants.  相似文献   

7.
为了提高化工园区应急管理水平,探索园区应急管理存在的问题,引进可拓理论 对化工园区应急能力进行评估。首先,建立化工园区应急管理能力评估指标体系,选取 预防与应急准备能力、监测与预警能力、应急处置与救援能力以及事后恢复与重建能力 为一级评估指标;管理建设能力、人员培训能力、应急保障能力等9项为二级评估指标 ;规章制度、机构体系、应急预案等31项为三级评估指标。然后,构建化工园区应急管 理能力可拓评估模型,对榆林市某化工园区进行实证评估研究,结果表明:该化工园区 应急管理能力级别变量特征值为2.03,评估级别为良好。  相似文献   

8.
为了分析不同通风条件对柴油池火燃烧特性及引燃特性的影响,进行205 mm带水垫层柴油池火的引燃实验,通过对池火燃料的质量损失速率、火焰高度、温度及热辐射等的监测,分析通风环境中柴油池火的热传递规律。结果表明:当风速为0.5 m/s时,火灾进入旺盛阶段的时间提前,火焰平均温度最高;当风速为1 m/s时,风速的增加导致油池火的质量损失速率增加,位于主火源下风向的待引燃火源获得的热辐射通量增大,火灾旺盛阶段火焰的平均温度降低,火焰高度降低,下风向相邻油盘引燃的时间提前;1 m/s情况下,205 mm带水垫层柴油池火的安全间距需增加到1D以上;通风环境对池火发展及蔓延的影响是显著的,应适当加大下风向可燃物的安全间距,合理选择通风排烟风速,优化火灾应急救援策略。  相似文献   

9.
高压管道天然气泄漏扩散过程的数值模拟   总被引:5,自引:2,他引:3  
采用CFD模型的方法对高压管道内的天然气泄漏和扩散过程进行了数值模拟。其结果表明,从高压管道泄出的天然气在大气中主要表现为高速射流的泄漏过程和随后的扩散过程。在泄漏过程中,天然气在泄漏口附近为欠膨胀射流,整个泄漏过程具有一定的高度;在扩散过程中,天然气在浮力作用下以向上扩散的形式发展。研究了不同环境风速对扩散过程的影响,较大的风速可以使天然气向下风方向更远的距离扩散,从而增大了天然气爆炸危险浓度的范围。研究结果可  相似文献   

10.
11.
平地型铀尾矿库氡大气扩散数值模拟及环境效应分析   总被引:2,自引:0,他引:2  
以平地型铀尾矿库为研究对象,采用数值模拟方法,分析了铀尾矿库下风向的氡扩散和浓度分布,并预测了该地区常年主导风向下氡对公众所致的年有效剂量。结果表明,风速从0.5 m/s变化到2.0m/s时,氡在尾矿库下风向的积聚范围由5 000 m缩减为2 500 m,尾矿库下风向2 500 m距离以内的氡浓度降低较快,随着距离的增大,近地面区域氡浓度不断降低,5 000 m外氡浓度变化渐趋平缓。U10=0.5m/s时尾矿库下风向地区的氡浓度比其他风速下最高高出近43%。对照公众个人的年有效剂量标准,考虑风频风速影响,对氡的环境效应分析表明,低风速下现行标准中铀尾矿库防护距离的规定值偏小,应进行适当调整。  相似文献   

12.
13.
The inherent risks associated with accidental releases of hazardous materials during transport have drawn attention and concerns in the recent decades. The aim of this study is to propose a tool for evaluation and comparison of the transportation networks which can be used to assess the routing options between origins and destinations of the cargos for their suitability for transporting hazardous material cargos by tanker trucks and to identify routes which provide lower accidental release risks, lower public exposure risks, and offer economical benefits. Each route segment of transportation networks were evaluated using specific criteria which included health risk and cost of delay in case of an accidental release of materials, trucking cost and proximity to vulnerable areas. Since, the health impact of hazardous materials differ depending on the characteristics of the material being transported as well as release quantities and atmospheric conditions; this paper aimed in providing a tool that can be used to estimate the impact radius (for health risks) after accidental release of hazardous materials by taking into account different atmospheric conditions based on the meteorological data and solar elevation angle. The Gaussian air dispersion model paired with ArcGIS using Python programming were employed to estimate the health risk impact zones by considering the meteorological data, and accordingly to analyze road segments for cost impacts (delay and trucking costs), and the proximity to vulnerable areas. The route assessment tool was demonstrated with a case study. The results of this study can efficiently aid decision makers for transportation of hazardous materials.  相似文献   

14.
An underwater LNG release test was conducted to understand the phenomena that occur when LNG is released underwater and to determine the characteristic of the vapor emanating from the water surface. Another objective of the test was to determine if an LNG liquid pool formed on the water surface, spread and evaporated in a manner similar to that from an on-the-surface release of LNG.A pit of dimensions 10.06 m × 6.4 m and 1.22 m depth filled with water to 1.14 m depth was used. A vertically upward shooting LNG jet was released from a pipe of 2.54 cm diameter at a depth of 0.71 m below the water surface. LNG was released over 5.5-min duration, with a flow rate of 0.675 ± 0.223 L/s. The wind speed varied between 2 m/s and 4 m/s during the test.Data were collected as a function of time at a number of locations. These data included LNG flow rate, meteorological conditions, temperatures at a number of locations within the water column, and vapor temperatures and concentrations in air at different downwind locations and heights. Concentration measurements were made with instruments on poles located at 3.05 m, 6.1 m and 9.14 m from the downwind edge of the pit and at heights 0.46 m, 1.22 m, and 2.13 m. The phenomena occurring underwater were recorded with an underwater video camera. Water surface and in-air phenomena including the dispersion of the vapor emanating from the water surface were captured on three land-based video cameras.The lowest temperature recorded for the vapor emanating from the water surface was −1 °C indicating that the vapor emitted into air was buoyant. In general the maximum concentration observed at each instrument pole was progressively at higher and higher elevations as one traveled downwind, indicating that the vapor cloud was rising. These findings from the instrument recorded data were supported by the visual record showing the “white” cloud rising, more or less vertically, in air. No LNG pool was observed on the surface of water. Discussions are provided on the test findings and comparison with predictions from a previously published theoretical model.  相似文献   

15.
Accidental releases of toxic gas in the chemical plants have caused significant harm to the exposed occupants. To evaluate the consequences of these accidents, a dynamic approach considering the gas dispersion and behavior evacuation modelling has been proposed in this paper. This approach is applied to a hypothetical scenario including an accidental chlorine release in a chemical plant. CFD technique is utilized to calculate the time-varying concentration filed and evacuation modelling is used to obtain the evacuation routes. The exposure concentrations in the evacuation routes are calculated by using the code of data query. The integrated concentration toxic load model and probit model are used to calculate the probability of mortality of each occupant by using the exposure concentrations. Based on this dynamic approach, a new concept of average probability of mortality (APM) has been proposed to quantify the consequences of different accidental scenarios. The results show that APM decreases when the required detection time decreases or emergency evacuation mode is implemented. The impact of the detection time on APM becomes small as the wind speed increases. The effect of emergency evacuation mode is more obvious when the release occurs in an outdoor space.  相似文献   

16.
针对工业LNG储罐泄漏问题,基于Fluent软件结合UDF修正风速模型,研究不同工况下泄漏发展情况,并对泄露口下风向沿直线距离上的泄漏气体浓度进行分析,得出准确气体扩散浓度范围。研究结果表明,泄漏孔口越接近地面,横向扩散距离越大。相同风速下,泄漏路径上气体浓度具有相似的变化趋势,风速越高泄漏气体沿扩散路径的稀释作用越强。劲风条件下,泄漏下风口直线路径上最高CH4浓度与距离呈现负相关规律。  相似文献   

17.
含硫天然气净化厂硫化氢泄漏分析及对策   总被引:1,自引:1,他引:0  
以川东北某含硫天然气净化厂为对象,通过分析该净化厂的处理工艺及可能造成泄漏的各种原因,确定了硫化氢泄漏危险较高的生产单元。通过工艺压力、流量、物料组分的比对,选取了脱硫单元原料气和硫磺回收单元酸性气作为模拟泄漏物料。对该厂所在地的气象条件和厂区的地形地貌进行了调查,净化厂当地近5年风速、云量统计表明低风速和多云为主导天气,将D1.5m/s作为模拟硫化氢泄漏扩散的典型气象条件。采用了美国石油学会(API)推荐地面粗糙度长度。运用PHAST软件计算了在典型气象条件下通过3种不同孔径泄漏1 min,5min和30min,形成的立即危及生命或健康(IDLH)范围。在典型气象条件下IDLH的下风向边界距离在41m至1190m范围内,以硫磺回收单元的大孔径泄漏为最远。以小孔泄漏为例模拟并讨论了风速、大气稳定度对硫化氢扩散的影响。为降低H2S泄漏风险提出了在线监测及联锁系统设置的要求,对避免和减少硫化氢中毒伤亡事故具有指导意义。  相似文献   

18.
As more and more quantitative risk analyses (QRAs) are performed for petrochemical facilities around the world, the variety of techniques used in these analyses continually expands. Although the emphasis is often placed on risk's two constituents, consequence and probability, many of the contributing elements get marginalized, or even lost in the analysis. One such element is the weather data. Changes in wind speed and atmospheric stability affect the size and extent of impact zones, while the different wind directions modify how the impacts are mapped in the area surrounding each release point. Weather data is often defined by three variables (wind speed, atmospheric stability, and wind direction), and is site-specific in nature, with definable probabilities for each triplet combination. Many QRA studies shortcut the quantitative nature of an analysis by condensing the weather data into a small number of combinations, with unpredictable results. By utilizing robust risk mapping techniques, it can be demonstrated that risk contours may be critically dependent on the number of wind speed/stability/direction combinations employed in the analysis. This paper will also demonstrate how a risk assessment can arrive at different conclusions based on the level of weather data detail applied in the analysis.  相似文献   

19.
The use of LNG (liquefied natural gas) as fuel brings up issues regarding safety and acceptable risk. The potential hazards associated with an accidental LNG spill should be evaluated, and a useful tool in LNG safety assessment is computational fluid dynamics (CFD) simulation. In this paper, the ADREA-HF code has been applied to simulate LNG dispersion in open-obstructed environment based on Falcon Series Experiments. During these experiments LNG was released and dispersed over water surface. The spill area is confined with a billboard upwind of the water pond. FA1 trial was chosen to be simulated, because its release and weather conditions (high total spill volume and release rate, low wind speed) allow the gravitational force to influence the cold, dense vapor cloud and can be considered as a benchmark for LNG dispersion in fenced area. The source was modeled with two different approaches: as vapor pool and as two phase jet and the predicted methane concentration at sensors' location was compared with the experimental one. It is verified that the source model affect to a great extent the LNG dispersion and the best case was the one modeling the source as two phase jet. However, the numerical results in the case of two phase jet source underestimate the methane concentration for most of the sensors. Finally, the paper discusses the effect of neglecting the ?9.3° experimental wind direction, which leads to the symmetry assumption with respect to wind and therefore less computational costs. It was found that this effect is small in case of a jet source but large in the case of a pool source.  相似文献   

20.
Recently, infrared optical imaging has been applied in the oil and gas industry as a method to detect potential leaks in pipelines, components and equipment. The EPA suggested that this impending technique is considered as a smart gas LDAR (leak detection, monitoring and repair) for its rapid recognition of leaks, accuracy and robustness. In addition, compared to the conventional method using Total Vapor Analyzer (TVA) or gas sniffer, it has several other advantages, such as the ability to perform real-time scanning and remote sensing, ability to provide area measurement instead of point measurement, and provide an image of the gas which is not visible to naked eye. However, there is still some limitation in the application of optical imaging techniques; it does not give any measurement of gas emissions rates or concentrations of the leaking gas. Infrared cameras can recognize a target gas and distinguish the gas from its surrounding up to a certain concentration, namely the minimum detectable concentration. The value of the minimum detectable concentration depends on the camera design, environmental conditions and surface characteristics when the measurement is taken. This paper proposed a methodology to predict gas emissions rates from the size of the dispersed gas plume or cloud to the minimum detectable concentration. The gas emissions rate is predicted from the downwind distance and the height of the cloud at the minimum detectable concentration for different meteorological conditions. Gas release and dispersion from leaks in natural gas pipeline systems is simulated, and the results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号