首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The hydrodynamics of super- and sub-critical shallow uniform free-surface flows are assessed using laboratory experiments aimed at identifying and quantifying flow structure at scales larger than the flow depth. In particular, we provide information on probability distributions of horizontal velocity components, their correlation functions, velocity spectra, and structure functions for the near-water-surface flow region. The data suggest that for the high Froude number flows the structure of the near-surface layer resembles that of two-dimensional turbulence with an inverse energy cascade. In contrast, although large-scale velocity fluctuations were also present in low Froude number flow its behaviour was different, with a direct energy cascade. Based on our results and some published data we suggest a physical explanation for the observed behaviours. The experiments support Jirka’s [Jirka GH (2001) J Hydraul Res 39(6):567–573] hypothesis that secondary instabilities of the base flow may generate large-scale two-dimensional eddies, even in the absence of transverse gradients in the time-averaged flow properties.  相似文献   

2.
Numerical simulations for the wave radiation effect on the linear and nonlinear instabilities of rotating and non-rotating shallow flows are conducted using shallow-water equations. At a low convective Froude number, the results of the instabilities is a string of eddies. The coalescence between the neighbouring eddies decides the transverse mixing of the shallow shear flow. At a higher convective Froude number, the development of the shear flow is characterized by wave radiation and the production of shocklets. The radiation of waves in the non-rotating shallow flow is a phenomenon analogous to the radiation of sound in gas dynamics. In the rotating flow on the other hand, the shallow-flow instabilities are intensified due to rotational interference within a window of instability over a narrow range of Rossby numbers.  相似文献   

3.
In hydraulic structures, free-surface aeration is commonly observed: i.e., the white waters. The air bubble entrainment may be localised (hydraulic jumps, plunging jets) or continuous along an interface (water jets, chutes). Despite recent advances, there are some basic concerns about the extrapolation of laboratory results to large size prototype structures. Herein the basic air bubble entrainment processes are reviewed and the relevant dynamic similarities are discussed. Traditionally, physical studies are conducted using a Froude similitude which implies drastically smaller laboratory Reynolds numbers than in the corresponding prototype flows. Basic dimensional analyses are developed for both singular and interfacial aeration processes. The results are discussed in the light of systematic investigations and they show that the notion of scale effects is closely linked with the selection of relevant characteristic air–water flow properties. Recent studies of local air–water flow properties highlight that turbulence levels, entrained bubble sizes and interfacial areas are improperly scaled based upon a Froude similitude even in large-size models operating with the so defined Reynolds numbers ρ w × q w/μ w up to 5 E+5. In laboratory models, the dimensionless turbulence levels, air–water interfacial areas and mass transfer rates are drastically underestimated.  相似文献   

4.
It is commonly assumed that shallow flows are in good approximation two-dimensional (2D) or quasi-2D. We will provide evidence that this is not always the case, and that the simple scaling argument based on the continuity equation does not always apply. Laboratory experiments on vortex flows in shallow fluid layers have revealed that locally significant three-dimensional (3D) effects and substantial vertical motions may occur, clearly destroying the assumed 2D character of the flow. For example, in the case of a dipolar vortex structure, an oscillatory vertical motion is observed in the vortex cores, while a spanwise circulation roll is present in front of the travelling dipole. These laboratory observations are confirmed by 3D numerical flow simulations. Attention will be given to a correct scaling analysis, in which both the aspect ratio of the fluid depth and a typical horizontal scale and the Reynolds number play a role.  相似文献   

5.
Tidal vortices play an important role in the flushing of coastal regions. At the mouth of a tidal inlet, the input of circulation by the ebb tide may force the formation of a starting-jet dipole vortex. The continuous ebb jet current also creates a periodic sequence of secondary vortices shed from the inlet mouth. In each case, these tidal vortices have a shallow aspect ratio, with a lateral extent much greater than the water depth. These shallow vortices affect the transport of passive tracers, such as nutrients and sediment from the estuary to the ocean and vice versa. Field observation of tidal vortices primarily relies on ensemble averaging over several vortex events that are repeatable in space and can be sampled by a fixed Eulerian measurement grid. This paper presents an adaptive approach for locating and measuring within tidal vortices that propagate offshore near inlets and advect along variable trajectories set by the wind-driven currents. A field experiment was conducted at Aransas Pass, Texas to measure these large-scale vortices. Locations of the vortices produced during ebb tide were determined using near real-time updates from surface drifters deployed near or within the inlet during ebb tide, and the paths of towed acoustic Doppler current profiler (ADCP) transects were selected by analysis of the drifter observations. This method allowed ADCP transects to be collected within ebb generated tidal vortices, and the paths of the drifters indicated the presence of both the starting-jet dipole and the secondary vortices of the unstable ebb tidal jet. Drifter trajectories were also used to estimate the size of each observed vortex as well as the statistics of relative diffusion offshore of Aransas Pass. The field data confirmed the starting-jet spin-up time (time until the vortex dipole begins to propagate offshore) measured in the laboratory by Bryant et al. [6] and that the Strouhal condition of \(St=0.2\) predicts the shedding of secondary vortices from the inlet mouth. The size of the rotational core of the vortex is also shown to be approximated physically by the inlet width or by \(0.02UT\) , where U is the maximum velocity through the inlet channel and T is the tidal period, and confirms results found in laboratory experiments by Nicolau del Roure et al. [23]. Additionally, the scale of diffusion was approximately 1–15 km and the apparent diffusivity was between 2–130  \(m^2/s\) following Richardsons law.  相似文献   

6.
The Southern Ocean is one of the most rapidly changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically important krill and fish. Because sea ice loss is expected to be accompanied by declines in krill and fish predators, decoupling the effects of climate and anthropogenic changes on these predator populations is crucial for ecosystem‐based management of the Southern Ocean. We reviewed research published from 2007 to 2014 that incorporated very high‐resolution satellite imagery to assess distribution, abundance, and effects of climate and other anthropogenic changes on populations of predators in polar regions. Very high‐resolution imagery has been used to study 7 species of polar animals in 13 papers, many of which provide methods through which further research can be conducted. Use of very high‐resolution imagery in the Southern Ocean can provide a broader understanding of climate and anthropogenic forces on populations and inform management and conservation recommendations. We recommend that conservation biologists continue to integrate high‐resolution remote sensing into broad‐scale biodiversity and population studies in remote areas, where it can provide much needed detail. Aplicaciones de Imágenes de Muy Alta Resolución en el Estudio y Conservación de Grandes Depredadores en el Océano Antártico  相似文献   

7.
A mesoscale vortex structure in the small stratified Lake Stechlin has been revealed by field experiments with satellite-tracked quasi-lagrangian drifters. The vortex with a radius of about 200 m drifted at 300 m/day along the western bight of the lake with nearly constant rotation speed of 3 cpd. Analysis of kinematical properties of the vortex motion demonstrates solid body character of rotation. Extrapolation of the vortex drift trajectory over the period preceding the observations combined with data on local winds and seiche dynamics has allowed tracing the vortex fate from its generation point. The normal modes analysis of the internal seiching in the lake reveals the vortex generation mechanism to be the interaction of certain seiche modes with local bottom topography and suggests generation of the mesoscale vortices to be the a regular feature of the lake circulation. Analysis of vorticity suggests additional energy supply to rotational flow, possibly from inverse cascading of small-scale turbulent motions—a feature typical for quasi-2D turbulence. The vortices can play an important role in the energy transport from basin-scale motions to small-scale boundary mixing. They can also contribute significantly to the horizontal heterogeneity of phyto- and zooplankton distribution as well as to the transport of dissolved matter such as nutrients between littoral and profundal areas. The topographically generated traveling vortices represent an analog of the synoptic eddies in the Ocean and in the Atmosphere, whereas their role in the lake hydrodynamics is practically unknown.  相似文献   

8.
There are two approaches in the application of satellite sensors to marine pollution studies. Satellite sensors are used to observe and characterize ocean pollutants such as industrial wastes and oil. in addition, satellite observations provide information useful in illuminating processes such as eutrophi-cation or air-sea exchange of CO2, that are important in determining the distribution and fate of pollutants.

Satellite technology is an important tool in monitoring and studying ocean pollution. Visible sensors have been used to observe and characterize sewage sludge and industrial wastes dumped at sea. Oil slicks have been observed with Landsat, AVHRR and SAR imagery. Besides directly detecting pollutants, satellite sensors are useful for analyzing ocean processes that are influential in the fate of pollutants. These processes include eutrophication of coastal waters and the distribution of suspended matter. the fate of excess CO2 can be addressed using scatterometer-derived estimates of wind speeds to determine the CO2 exchange coefficient at the sea surface on a global scale.  相似文献   

9.
The role of species diversity on ecosystem resistance in the face of strong environmental fluctuations has been addressed from both theoretical and experimental viewpoints to reveal a variety of positive and negative relationships. Here we explore empirically the relationship between the richness of forest woody species and canopy resistance to extreme drought episodes. We compare richness data from an extensive forest inventory to a temporal series of satellite imagery that estimated drought impact on forest canopy as NDVI (normalized difference vegetation index) anomalies of the dry summer in 2003 in relation to records of previous years. We considered five different types of forests that are representative of the main climatic and altitudinal gradients of the region, ranging from lowland Mediterranean to mountain boreal-temperate climates. The observed relationship differed among forest types and interacted with the climate, summarised by the Thorntwaite index. In Mediterranean Pinus halepensis forests, NDVI decreased during the drought. This decrease was stronger in forests with lower richness. In Mediterranean evergreen forests of Quercus ilex, drought did not result in an overall NDVI loss, but lower NDVI values were observed in drier localities with lower richness, and in more moist localities with higher number of species. In mountain Pinus sylvestris forests NDVI decreased, mostly due to the drought impact on drier localities, while no relation to species richness was observed. In moist Fagus sylvatica forests, NDVI only decreased in plots with high richness. No effect of drought was observed in the high mountain Pinus uncinata forests. Our results show that a shift on the diversity-stability relationship appears across the regional, climatic gradient. A positive relationship appears in drier localities, supporting a null model where the probability of finding a species able to cope with drier conditions increases with the number of species. However, in more moist localities we hypothesize that the proportion of drought-sensitive species would increase in richer localities, due to a higher likelihood of co-occurrence of species that share moist climatic requirements. The study points to the convenience of considering the causes of disturbance in relation to current environmental gradients and historical environmental constraints on the community.  相似文献   

10.
There are two approaches in the application of satellite sensors to marine pollution studies. Satellite sensors are used to observe and characterize ocean pollutants such as industrial wastes and oil. in addition, satellite observations provide information useful in illuminating processes such as eutrophi-cation or air-sea exchange of CO2, that are important in determining the distribution and fate of pollutants.

Satellite technology is an important tool in monitoring and studying ocean pollution. Visible sensors have been used to observe and characterize sewage sludge and industrial wastes dumped at sea. Oil slicks have been observed with Landsat, AVHRR and SAR imagery. Besides directly detecting pollutants, satellite sensors are useful for analyzing ocean processes that are influential in the fate of pollutants. These processes include eutrophication of coastal waters and the distribution of suspended matter. the fate of excess CO2 can be addressed using scatterometer-derived estimates of wind speeds to determine the CO2 exchange coefficient at the sea surface on a global scale.  相似文献   

11.
ABSTRACT

Climatic variability and its effects have been experienced in the high-altitude regions of Nepal for some considerable time. Most of the studies on local people’s perception available so far in Nepal on climate include with respect to weather changes, and almost none have been verified with satellite imagery. This study thus attempts to combine meteorological and satellite imagery for comparing local people’s perception so that a more robust validation can be established. Both qualitative (transect walk, key informant interview, focus group discussion and institutional visit) and quantitative (meteorological and satellite image) data and techniques were employed. Local people from Rara and Langtang in Nepal shared their observations and perceptions on the changing climate for the last three decades and the effects on them and their local microclimate. Apart from temperature, rainfall and snowfall anomalies, locals observed changes in the water sources and increasing drought along with alteration in the phenology of tree and agricultural crops as well as vegetation range migration. Satellite image analysis also confirms a change in snow cover as notified by the local people. This study shows that local people’s knowledge could be considered as a complement to the observed scientific evidences of climate change science and their perceptions can be used reliably where scientific data are lacking. Finally, perceived climatic risks, current gaps and future opportunities are discussed and some recommendations are suggested.  相似文献   

12.
Although the drivers of deforestation in Brazil are relatively well known, there is still limited understanding of the role of family farm-based rural settlements in land cover changes, particularly in the Brazilian savanna. This research aims to identify land use patterns within rural settlements and examine how they are influenced by regional dynamics. The study is based on GIS techniques and satellite image classification (Landsat 5-TM and RapidEye imagery), combined with geo-referenced fieldwork data in three different regions of the State of Goiás. The results reveal that the deforestation arrangement within the studied rural settlements is very similar to the deforestation found in the surrounding regions. As a positive outcome, the rural settlements have a higher share of remnant vegetation when compared to the surrounding areas, but this is still concentrated within legal reserves. We conclude that the changing patterns of rural settlement land cover are highly influenced by regional dynamics.  相似文献   

13.
A comprehensive laboratory study of negatively buoyant discharges is presented. Unlike previous studies, here the focus is on generating data sets where influences of the bottom boundary have been eliminated. There are significant discrepancies in the published dilution data for these flows and a contributing factor is the large variation in the bottom boundary condition. A Laser-induced Fluorescence system is employed to gather flow spread, peak concentration (minimum dilution) and trajectory data for a wide range of densimetric Froude numbers and initial discharge angles. Data from these experiments are compared with previously published data, along with predictions from integral models and a revised form of the previously published semi-analytical solutions. The new data sets are not distorted by mixing processes associated with the bottom boundary and therefore provide the basis for more meaningful assessments of the predictive capabilities of existing models, given that the influences of the bottom boundary on contaminant mixing are not incorporated into these models. In general the models assessed are able to predict key geometric quantities with reasonable accuracy, but their minimum dilution predictions are conservative. Importantly dilution at the return point shows a strong dependence on the initial discharge angle and this could have important implications for the design of discharge systems.  相似文献   

14.
Impulsive waves caused by subaerial landslides   总被引:10,自引:0,他引:10  
This paper presents the experimental results of impulsive waves caused by subaerial landslides. A wide range of effective parameters are considered and studied by performing 120 laboratory tests. Considered slide masses are both rigid and deformable. The effects of bed slope angle, water depth, slide impact velocity, geometry, shape and deformation on impulse wave characteristics have been inspected. The impulse wave features such as amplitude, period and also energy conversation are studied. The effects of slide Froude number and deformation on energy conversation from slide into wave are also investigated. Based on laboratory measured data an empirical equation for impulse wave amplitude and period have been presented and successfully verified using available data of previous laboratory works.  相似文献   

15.
Insects that should be considered for conservation attention are often overlooked because of a lack of data. The detailed information necessary to assess population growth, decline, and maximum range is particularly difficult to acquire for rare and cryptic species. Many of these difficulties can be overcome with the use of life table analyses and heat energy accumulation models common in agriculture. The wekiu bug (Nysius wekiuicola), endemic to the summit of one volcanic mountain in Hawaii, is a rare insect living in an environmentally sensitive alpine stone desert, where field‐based population assessments would be inefficient or potentially detrimental to natural and cultural resources. We conducted laboratory experiments with the insects by manipulating rearing temperatures of laboratory colonies and made detailed observations of habitat conditions to develop life tables representing population growth parameters and environmental models for wekiu bug phenology and demographic change. Wekiu bugs developed at temperatures only found in its environment on sunny days and required the thermal buffer found on cinder cones for growth and population increase. Wekiu bugs required approximately 3.5 months to complete one generation. The bug developed optimally from 26 to 30 °C, temperatures that are much higher than the air temperature attains in its elevational range. The developmental temperature range of the species confirmed a physiological reason why the wekiu bug is only found on cinder cones. This physiology information can help guide population monitoring and inform habitat restoration and conservation. The wekiu bug was a candidate for listing under the U.S. Endangered Species Act, and the developmental parameters we quantified were used to determine the species would not be listed as endangered or threatened. The use of developmental threshold experiments, life table analyses, and degree day modeling can directly inform otherwise unobservable habitat needs and demographic characteristics of extremely rare insects. Aplicación de Análisis Demográfico de Desarrollo Agrícola para la Conservación del Insecto Weiku Alpino Hawaiano  相似文献   

16.
The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically. This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect. Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current. Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations. When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition. In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity. However, the scale effect would be relatively modest. The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation. Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity. Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents. The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously.  相似文献   

17.
18.
Recent theoretical research indicates that dynamics of shallow flows can be strongly affected by waves developing on the free surface. In this study a shallow wake with an oblique pressure wave behind a model of a tree-centered emergent bar is investigated in a gravel-bed river. A bar was constructed in a shallow river reach with nearly uniform flow. The structure of flow was assessed with an array of velocimeters. Flow visualization with a solute of fluorescent dye complemented the measurements and provided qualitative information on the wake behavior. This study indicates that quantitative criteria for shallow wakes classification developed in laboratory setups are not straightforward in explaining the field results. According to the wake stability criteria, the expected dynamics for examined wake flow is a vortex street (VS) type. Contrary to this expectation, measurements and visualizations in this study show that mean momentum differential and turbulent vortices in the wake decrease stronger than expected in VS type and therefore the wake should be classified as unsteady bubble type with a weak downstream instability. Analysis of velocity differential dynamics in the examined shallow wake suggests that the bed friction alone is insufficient to explain the inconsistency of VS criterion whereas accounting for advective fluxes driven by inhomogeneous pressure field leads to a correct prediction of the wake behavior.  相似文献   

19.
Meandering flows in rectangular shallow reservoirs were experimentally investigated. The characteristic frequency, the longitudinal wave length and the mean lateral extension of the meandering jet were extracted from the first paired modes, obtained by a proper orthogonal decomposition of the surface velocity field measured by large scale PIV. The depth-normalised characteristic lengths and the Strouhal number were then compared to the main dimensionless numbers characterizing the experiments: Froude number, friction number and reservoir shape factor. The normalised wave length and mean lateral extension of the meandering jet are neither correlated with the Froude number nor with the reservoir shape factor; but a clear relationship is found with the friction number. Similarly, the Strouhal number is found proportional to a negative power of the friction number. In contrast, the Froude number and the reservoir shape factor enable to predict the occurrence of a meandering flow pattern: meandering jets occur for Froude number greater than 0.21 and for a shape factor smaller than 6.2.  相似文献   

20.
Evolution of the internal solitary waves (ISWs) in the northern South China Sea (SCS) has recently attracted the attention of many oceanographers in Taiwan and the United States. These ISWs are believed to have been induced by a branch of the Kuroshio current over Luzon Strait, which propagates westward over two ridges in the Luzon Strait between Taiwan and the Philippines, and further onto the continental margin with a shelf-slope in the SCS. This paper presents some preliminary results for the evolution of a depression ISW across two triangular obstacles using numerical modelling and laboratory experiments. The experimental results confirm that the intervals and relative height between the two obstacles are important factors in the interaction of an ISW with the obstacles. However, in the case of the movement of an ISW of depression-type across the Luzon Strait, the effect of the two ridges on the characteristics of the ISW might be less significant than that from the shelf-slope, due to the variations in relative water depth. Results from numerical experiments also show that the amplitude of an ISW can be augmented once the wave commences its contact with a shelf-slope, where an internal hydraulic jump and wave breaking with vortex motion are evident in the laboratory experiments. Eventually, an ISW of depression-type could become an elevation-type at the edge of the continental shelf landwards beyond the turning point, where the upper layer is larger than the bottom layer in a stratified water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号