首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
为研究石煤提钒离交尾水的深度处理技术,利用质量分数为1%、5%和10%的过氧化氢溶液对ZWY15型活性炭进行改性,得到3种改性活性炭即1%AC、5%AC和10%AC;探讨其对该废水中低浓度的NH3-N、V等的吸附效果。实验结果表明:AC或改性AC的加入可使废水的碱度升高,随着吸附时间及吸附剂投加量的增加,升高幅度增大,且不同改性AC对废水碱度提高的幅度不同;相较于未改性活性炭,过氧化氢改性活性炭对V的吸附效果明显提高,去除率最大可提高30%,对NH3-N的去除率提升约11%;当投加量为60 g/L时,10%AC可使废水中V的浓度降低至1.88 mg/L,此时废水中Cr、Cd和Zn的浓度分别降低至0.006、0.010和0.036 mg/L,均低于《钒工业污染物排放标准》(GB26452-2011)所规定的排放限值。  相似文献   

2.
活性炭吸附-Fenton氧化处理高盐有机废水   总被引:2,自引:0,他引:2  
采用活性炭吸附-Fenton氧化耦合工艺处理高盐度难降解有机废水的性能。考察了不同工艺参数对活性炭吸附及Fenton氧化对高盐有机废水处理效率的影响。结果表明,采用活性炭单独处理时,在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60 min条件下,COD去除率最大,达到47.5%。活性炭吸附处理后,废水再采用Fenton氧化处理,在FeSO4.7H2O投加量为3.0 g/L,H2O2投加量为4.7 g/L,反应时间为30 min条件下,COD去除率最大,达到84.4%。整体而言,经过活性炭吸附和Fenton氧化处理后,废水COD由初始浓度13 650 mg/L降至560 mg/L,去除率达到95.9%。活性炭吸附-Fenton氧化耦合工艺适合高盐度难降解有机废水的处理。  相似文献   

3.
MBBR处理猪场废水厌氧消化液的研究   总被引:5,自引:0,他引:5  
采用移动床生物膜反应器(MBBR)处理猪场废水厌氧消化液,考察了水力停留时间(HRT),进水COD和NH3-N浓度对反应器处理效果的影响.结果表明,在温度为20~30℃,填料填充比为50%,进水COD和NH3-N浓度分别为1016 mg/L和496 mg/L条件下,当HRT为12.5 h时,COD和NH3-N去除率可分别达到62%和77%,猪场废水厌氧消化液中可生物降解性有机物基本得到去除,当HRT增至23.8 h时,COD和NH3-N去除率分别为64%和86%,出水COD和NH3-N浓度分别为368 mg/L和70 ms/L,均达到了<畜禽养殖业污染物排放标准>(GB18596-2001)的要求.  相似文献   

4.
以改性二次锶渣为吸附剂,研究了吸附时间、吸附剂投加量、磷初始浓度和pH值对废水中磷去除效果的影响。结果表明,当总磷浓度为10mg/L,pH为7、二次锶渣投加量为15g/L时,90min内就可使废水中磷的去除率达到95%以上,总磷浓度低于污水综合排放标准的一级标准;改性二次锶渣对磷的吸附符合Langmuir等温吸附模型及准二级动力学模型。  相似文献   

5.
对含有表面活性剂的废水(以下简称表活废水)进行了傅里叶红外光谱分析(FTIR),结果表明,废水中所含表面活性剂主要为环烷酸钠。采用次氯酸钙(Ca(ClO)2)和活性炭-Ni催化氧化处理,在Ca(ClO)2投加量为4 500 mg/L,活性炭-Ni投加量为7 000 mg/L时,反应90 min,出水COD为158.91 mg/L,去除率达62.92%。催化氧化出水经沸石吸附处理,在pH为6.85,吸附时间为2 h,沸石投加量为17 g/L的条件下,吸附出水COD和油含量分别为88.92 mg/L和2.53mg/L,去除率分别为45.65%和90.02%,均达到《污水综合排放标准(GB8978-1996)》的一级标准要求。催化剂活性炭-Ni和吸附剂沸石均具有较稳定的活性,在重复使用20次后,出水COD的去除率仅分别降低了1.16%和1.32%。  相似文献   

6.
采用粘结剂聚乙烯醇(PVA)、造孔剂碳酸氢钠(NaHCO3)和微波强化Al改性膨润土(以下简称M-Al-Bt)制备改性膨润土颗粒(以下简称MBG),研究MBG对微污染水中有机物和氨氮(NH4-N)的吸附效果,考察了不同投加量、反应时间、pH值对腐殖酸(HA)和NH4-N的去除效果影响.结果表明,投加量3 g/L,反应时间20 min,pH =7时,MBG对微污染水中20 mg/L HA和5mg/L NH4-N的去除率分别可达98%和20%以上.HA和NH4-N共存时,存在竞争吸附,HA影响了MBG对NH4-N的去除.  相似文献   

7.
为处理稀土分离排放的高浓度NH4 -N废水,采用模拟废水研究了在不同条件下减压蒸馏回收氯化铵对馏出液中NH4 -N浓度变化影响.发现真空度、不同浓度范围及溶液pH对馏出液中NH4 -N浓度有显著影响,在真空度为0.07MPa,溶液pH为3~4条件下蒸馏,可使馏出液中NH4 -N浓度<15 mg/L.实际废水验证试验表明,废水经气浮除油、氨水中和、适量重金属沉淀剂DTCR去除重金属及活性炭吸附微量重金属及油类物质等预处理后,减压蒸馏可获得较高品质氯化铵产品,经分析达到工业级合格产品,馏出液可作为自来水回用于生产.对废水处理成本和收益进行了估算,发现每处理1 m3废水可获得67.1元的经济收入,实现较高的经济效益和生态环境效益.  相似文献   

8.
采用Fenton氧化-序批式膜生物反应器(SBMBR)组合工艺处理干法腈纶废水。结果表明,在废水初始pH值为3.0,H2O2投加量为90.0 mmol/L,Fe2+投加量为20.0 mmol/L,反应时间为2.0 h的条件下,Fenton氧化预处理对腈纶生产废水的COD去除率达到47.0%以上,COD由1 091 mg/L降至560 mg/L,废水的BOD5/COD由0.32升至0.69,废水的可生化性得到显著提高。Fenton处理出水与丙烯腈废水等比例混合后,采用SBMBR进行生化处理,在水力停留时间为24 h,90 min缺氧/150 min好氧交替运行的条件下,COD、NH4+-N和TN的平均去除率分别为71.7%、97.2%和47.4%,碳源不足是限制TN去除效果的主要影响因素。在无外加碳源的条件下,组合工艺处理后出水COD和NH4+-N浓度分别为117 mg/L和1.7 mg/L,出水水质可以稳定达到国家一级排放标准(GB8978-1996)。  相似文献   

9.
改性膨润土对垃圾填埋场渗滤液吸附效果   总被引:2,自引:0,他引:2  
通过制备不同组分改性膨润土,研究其对苯酚的吸附效果,结果表明,十六烷基三甲基溴化铵+十二烷基磺酸钠+硫酸铝-改性膨润土>十六烷基三甲基溴化铵+十二烷基磺酸钠-改性膨润土>十六烷基三甲基溴化铵-改性膨润土。通过改性膨润土对实际复杂组分渗滤液的吸附研究,结果表明,使用活性炭改性的膨润土吸附COD和NH4+-N最为理想,单位质量COD吸附量最高为26.8 mg/g,NH4+-N最高为3.92 mg/g,其中,COD最高去除率为77.3%,氨氮为28.9%;十六烷基三甲基溴化铵+十二烷基磺酸钠+硫酸铝-改性膨润土对COD和NH4+-N均有去除效果,两者对于渗滤液实际处理工程具有应用价值。  相似文献   

10.
为解决纺织行业水回用问题,采用陶粒和活性炭组合填料生物滤池对锦纶废水二级生物处理出水进行了深度净化,并考察了气水比和水力负荷对曝气生物滤池处理效果的影响.研究结果表明,曝气生物滤池处理效果良好,平均出水COD、NH4 -N和TN分别为32 mg/L、1.5 mg/L和8.1 mg/L.随着气水比的增加,COD和NH4 -N平均去除率相应提高,TN平均去除率先增大后降低,当气水比为2∶1时,COD、NH4 -N和TN平均去除率分别为48.30%、84.24%和42.18%;随着水力负荷的增加,COD、NH4 -N和TN平均去除率均降低,当水力负荷为0.39 m3/m2·h时,COD、NH4 -N和TN平均去除率分别为48.33%、84.81%和42.54%.  相似文献   

11.
改性沸石吸附低浓度氨氮废水及其脱附的研究   总被引:4,自引:2,他引:2  
采用氯化钠溶液对浙江某地天然沸石改性,以低浓度氨氮废水为处理对象,比较了天然沸石和改性沸石的吸附等温线、吸附动力学和动态吸附,并进行了改性沸石的动态脱附研究.结果表明,沸石的平衡吸附量随着平衡浓度的增大而增大;Freundlich方程比Langmuir方程更好地描述沸石吸附低浓度氨氮废水的行为,改性沸石比天然沸石具有更...  相似文献   

12.
采用掺Al-TiO2作为改性剂制备改性膨润土,考察了微波辐射功率、辐射时间、TiO2改性剂用量、铝盐掺杂量、pH值对微污染水中COD和NH4-N去除效果的影响。实验表明,微波辐射功率为460 W,辐射时间为8 min,TiO2改性剂用量为1.3 mmol/g,铝盐掺杂量为0.2 mmol/g为最佳制备条件。pH值为6.0,改性膨润土投加量为40 mg/L,沉淀时间为30min时,对微污染水中初始浓度15 mg/L的COD和5 mg/L的NH4-N去除率分别达到92%和59%以上。  相似文献   

13.
厌氧-好氧工艺处理制药废水的中试研究   总被引:3,自引:0,他引:3  
将由厌氧折流板反应器(ABR)、移动床生物膜反应器(MBBR)和膜生物反应器(MBR)组合而成的厌氧-好氧工艺用于处理制药废水的中试研究.试验结果表明,当原水SS平均值为1000 mg/L,COD为10 000 mg/L,NH3-N为500 mg/L时,出水浊度、COD和NH3-N分别为3 NTU、500 mg/L以及10 mg/L以下,去除率分别为98%、95%和98%以上.  相似文献   

14.
焦化废水深度处理试验研究   总被引:1,自引:0,他引:1  
王娟  刘玉学  范迪 《环境工程学报》2009,3(10):1804-1807
采用BC法+复合过滤技术工艺对焦化废水生化出水进行深度处理试验。结果表明,在SE混凝剂投药量为30 mg/L、BC池停留时间为1.5 h、复合过滤器水力负荷为2.4 m3/(m2·h)的条件下,当深度处理进水水质为COD=196.1 mg/L、色度=120倍、NH3-N=35.1 mg/L时,其去除率分别为74.7%、86.7%和69.7%,出水可达回用水要求。  相似文献   

15.
改进型波形潜流人工湿地处理猪场废水   总被引:1,自引:0,他引:1  
提出了一种改进型波形潜流人工湿地(improved wavy subsurface flow constructed wetland,IW-SFCW)并研究了该湿地系统在5个水力停留时间(hydraulic retention time,HRT)(2、3、4、6和8 d)下对猪场废水的处理效果。结果表明,该湿地系统对猪场废水中各污染物有较好的去除效果。在水力停留时间为4 d,进水COD、TN、NH4+-N和TP浓度分别为511、120、110和10 mg/L左右时,该湿地系统对COD、TN、NH4+-N和TP的去除率分别为86.0%、54.4%、70.1%和91.6%。此外,该湿地系统对废水中COD、TP的去除效率随水力停留时间的延长逐渐提高,在HRT=8 d时去除效果最好,去除率分别达到92.7%和96.8%;但对TN、NH4+-N的去除率却随水力停留时间的延长出现先上升后下降的趋势,在HRT=4 d时去除率最高,分别为54.4%和70.1%。  相似文献   

16.
臭氧-BAF组合工艺对石化行业废水深度处理的中试研究   总被引:1,自引:0,他引:1  
采用臭氧-曝气生物滤池(BAF)组合工艺对中石化九江分公司二级生化出水进行深度处理中试实验。探讨了臭氧投加量、进水水质冲击负荷等因素对该组合工艺出水COD、NH4+-N的影响。中试结果表明,在该水质条件下,臭氧最佳投加量为20~25 mg/L;组合工艺处理后出水COD低于40 mg/L,NH4+-N低于5 mg/L,达到中水回用设计标准;该组合工艺能够经受一定冲击负荷。  相似文献   

17.
采用膜生物反应器进行含酚废水的处理,探讨投加好氧颗粒污泥对反应器中污泥性能的影响。结果表明,在膜生物反应器中投加好氧颗粒污泥能有效改善污泥性能,提高处理效果。从采用絮状污泥到逐渐增加好氧颗粒污泥投加量为100%的过程中,反应器中污泥浓度明显提高,MLSS由5 582 mg/L增加到8 168 mg/L;沉降性能得到改善,SVI由135.85 mL/g下降到29.36 mL/g;疏水性增强,Zeta电位由-20.302 mV升高到-4.325 mV;对含酚废水中COD、NH3-N的降解能力明显提高,COD、NH3-N、NO3-N去除率分别由87.3%、83.2%、55.3%增加到99.2%、94.9%、66.3%。改善了膜污染现象,膜通量衰减率由63.3%降低到42.8%。用二元多项式三维回归分析,得到污染物去除率关于好氧颗粒污泥投加量和反应器运行时间的二元方程,对指导好氧颗粒污泥膜生物反应器的连续运行具有重要意义。  相似文献   

18.
采用氯化钠溶液对甘肃白银天然沸石改性,以低浓度氨氮(NH4+-N)废水为处理对象,对比了天然沸石和改性沸石的动态吸附特性并绘制穿透曲线,利用Origin软件对实验数据分析处理,得出穿透曲线的通式。结果表明:在相同条件下,改性沸石的穿透时间和吸附饱和时间都比天然沸石的长约1.5倍;沸石经氯化钠改性后,对NH4+-N的吸附速率和饱和吸附量都明显提高,吸附性能显著改善。Origin软件对水溶液中NH4+-N的吸附穿透曲线的Logistic模型回归式具有较高的精度,该模型可以很好地反映沸石吸附剂的动态吸附过程。  相似文献   

19.
固硫灰渣深度处理焦化废水的实验研究   总被引:1,自引:1,他引:0  
选用同硫灰渣深度处理经生化处理后焦化废水,采用分光光度计法评价焦化废水的处理效果,采用XRD、XRF、SEM和IR等分析材料的成分、结构和微观形貌等.结果表明,固硫灰渣用量60 g/L、吸附时间15 min,焦化废水的脱色率可达94.22%,COD从原水的76.01 mg/L降低到处理后的5.76 mg/L,NH+4-...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号