首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of heavy metal contaminants from soil components. In this study, copper sorption-desorption isotherms were obtained for clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. Acidic pecan shell-derived activated carbon and basic broiler litter biochar were employed in desorption experiments designed to address both leaching by rainfall and toxicity characteristics. For desorption in synthetic rain water, broiler litter biochar amendment diminished sorption-desorption hysteresis. In acetate buffer (pH 4.9), significant copper leaching was observed, unless acidic activated carbon (pHpzc = 3.07) was present. Trends observed in soluble phosphorus and zinc concentrations for sorption and desorption equilibria suggested acid dissolution of particulate phases that can result in a concurrent release of copper and other sorbed elements. In contrast, sulfur and potassium became depleted as a result of supernatant replacements only when amended carbon (broiler litter biochar) or soil (San Joaquin) contained appreciable amounts. A positive correlation was observed between the equilibrium aluminum concentration and initial copper concentration in soils amended with acidic activated carbon but not basic biochar, suggesting the importance of cation exchange mechanism, while dissolution of aluminum oxides cannot be ruled out.  相似文献   

2.
Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 °C and 700 °C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 °C generally showed a greater ability at enhancing a soil’s sorption ability than that prepared at 350 °C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar.  相似文献   

3.
Yu XY  Mu CL  Gu C  Liu C  Liu XJ 《Chemosphere》2011,85(8):1284-1289
Pyrolysis of vegetative biomass into biochar and application of the more stable form of carbon to soil have been shown to be effective in reducing the emission of greenhouse gases, improving soil fertility, and sequestering soil contaminants. However, there is still lack of information about the impact of biochar amendment in agricultural soils on the sorption and environmental fate of pesticides. In this study, we investigated the sorption and dissipation of a neonicotinoid insecticide acetamiprid in three typical Chinese agricultural soils, which were amended by a red gum wood (Eucalyptus spp.) derived biochar. Our results showed that the amendment of biochar (0.5% (w/w)) to the soils could significantly increase the sorption of acetamiprid, but the magnitudes of enhancement were varied. Contributions of 0.5% newly-added biochar to the overall sorption of acetamiprid were 52.3%, 27.4% and 11.6% for red soil, paddy soil and black soil, respectively. The dissipation of acetamiprid in soils amended with biochar was retarded compared to that in soils without biochar amendment. Similar to the sorption experiment, in soil with higher content of organic matter, the retardation of biochar on the dissipation of acetamiprid was lower than that with lower content of organic matter. The different effects of biochar in agricultural soils may attribute to the interaction of soil components with biochar, which would block the pore or compete for binding site of biochar. Aging effect of biochar application in agricultural soils and field experiments need to be further investigated.  相似文献   

4.
Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal–phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the soil amended with biochar removed groundwater Pb, Zn, and Cd by 97.4 %, 53.4 %, and 54.5 %, respectively. Meanwhile, the metals from both groundwater and soil itself were immobilized with the amendments, with the leachability of the three metals in the CaCl2 and TCLP extracts being reduced by up to 98.1 % and 62.7 %, respectively. Our results indicate that the integrated chemical immobilization and pump-and-treat method developed in this study provides a novel way for simultaneous remediation of both metal-contaminated soil and groundwater.  相似文献   

5.
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.  相似文献   

6.
《Chemosphere》2013,90(11):1467-1471
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.  相似文献   

7.
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.  相似文献   

8.
Palygorskite as a feasible amendment to stabilize heavy metal polluted soils   总被引:19,自引:0,他引:19  
The sorption behaviour of palygorskite has been studied with respect to lead, copper, zinc and cadmium in order to consider its application to remediate soils polluted with these metals. The Langmuir model was found to describe well the sorption processes offering maximum sorption values of 37.2 mg/g for lead, 17.4 mg/g for copper, 7.11 mg/g for zinc and 5.83 mg/g for cadmium at pH 5-6. In addition the effect of palygorskite amendment in a highly polluted mining soil has been studied by means batch extractions and leaching column studies. The soluble metal concentrations as well as the readily-extractable metal concentrations were substantially decreased at any concentration of palygorskite applied to soil (1, 2, 4%), although the highest decrease is obtained at the 4% dose. The column studies also showed a high reduction in the metal leaching (50% for lead, 59% for copper, 52% for zinc and 66% for cadmium) when a palygorskite dose of 4% was applied.  相似文献   

9.
Studies has been conducted to compare the sorption properties between raw carbons made from olive cake and commercial activated carbons to remove aquatic pollutant such as heavy metal (HM), phenol (Ph), dodecylbenzenesulfonic acid-sodium salt detergent (DBSNa) and methylene blue dye (MB). Effect of acidic treatments by H2SO4, HCl and HNO3 on the sorption properties of olive cake carbon (OCC) were studied by mass titration, SEM photographs, sorption isotherms. It is found that acidic treatment changes the surface properties of OCC but do not enhance its sorption capacity. Compared to commercial activated carbons the OCC derivatives generally are equally able to uptake HM and Ph from solution but MB and DBSNa are not. This different behaviour is to attribute to manufacturing and activation treatments so as surface groups of the precursor sorbent material. For the heavy metals, chromium and silver were removed effectively but to small extent cadmium. This may be because of the various charge densities of metal elements tested. The results of the multiple experiments indicate that sorption of cadmium ions can be significantly improved by the presence of complexing agents sorbed from the carbon. An empirical mathematical form is proposed to correlate experimental data and to compare the performance of the different sorbent materials.  相似文献   

10.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   

11.
Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.  相似文献   

12.
不同土壤重金属复合污染的有效态离子冲量表征   总被引:4,自引:0,他引:4  
丁园  宗良纲 《环境污染与防治》2003,25(3):173-175,178
选择红壤、黄棕壤和潮土为对象,依据中国土壤环境质量二级和三级标准确定土壤重金属铜、锌、镉的污染浓度,通过生物盆裁试验研究在重金属Cu、Zn、Cd复合污染条件下牧草(黑麦草、紫花苜蓿)体内重金属含量和土壤中重金属有效态含量的相关性,结果表明,在3种不同性质的污染土壤上,牧草体内重金属的离子冲量与其对应土壤中重金属有效态的离子冲量之间均存在明显的相关性。校正土壤pH、牧草品种等因素后,土壤有效态离子冲量可以有效表征不同土壤-牧草系统的重金属复合污染。  相似文献   

13.
Sewage sludge-amended soils may alter their ability to adsorb heavy metals over time, due to the decomposition of sludge-borne organic matter. Thus, we studied Cd, Ni, and Zn adsorption by a sewage sludge-amended soil (Typic Xerofluvent) before and after one-year incubation in both monometal and competitive systems. In the monometal system, the order of decreasing sorption was Zn>Cd>Ni. Competition significantly reduced metal K(d), especially that of Cd which decreased by nearly 50%. Over the course of the incubation there was a 31% reduction of soil organic matter content. At the same time, in competitive systems Cd K(d) significantly decreased, while Zn K(d) significantly increased, and Ni K(d) remained unaffected. This study shows that sewage sludge-amended soils may change in their ability to sorb heavy metals over time at high metal concentrations. The data suggest that Cd is likely to be of most environmental significance in such soils, since it exhibited decreased sorption under competitive conditions and as the organic matter content of the soil was reduced. The potential for long-term release of metals should be considered in the risk assessment associated with sewage sludge addition to soils, particularly in climates where degradation of organic matter is likely to be enhanced.  相似文献   

14.
The objective of this research was to investigate the effect of wheat and rice biochars on pyrazosulfuron-ethyl sorption in a sandy loam soil. Pyrazosulfuron-ethyl was poorly sorbed in the soil (3.5–8.6%) but biochar amendment increased the herbicide adsorption, and the effect varied with the nature of the feedstock and pyrolysis temperature. Biochars prepared at 600°C were more effective in adsorbing pyrazosulfuron-ethyl than biochars prepared at 400°C. Rice biochars were better than wheat biochars, and higher herbicide adsorption was attributed to the biochar surface area/porosity. The Freundlich constant 1/n suggested nonlinear isotherms, and nonlinearlity increased with increase in the level of biochar amendment. Desorption results suggested sorption of pyrazosulfuron-ethyl was partially irreversible, and the irreversibility increased with increase in the level of biochar. Both sorption and desorption of pyrazosulfuron-ethyl correlated well with the content of biochars. The free energy change (ΔG) indicated that the pyrazosulfuron-ethyl sorption process was exothermic, spontaneous and physical in nature. Persistence studies indicated that biochar (0.5%) amendment did not have significant effect on herbicide degradation, and its half-life values in the control, 0.5% WBC600- and RBC600-amended rice planted soils were 7, 8.6, and 10.4 days, respectively.  相似文献   

15.
Sorption of copper, zinc and lead on soil mineral phases   总被引:3,自引:0,他引:3  
Sipos P  Németh T  Kis VK  Mohai I 《Chemosphere》2008,73(4):461-469
Soil mineral phases play a significant role in controlling heavy metal mobility in soils. The effective study of their relation needs the integrated use of several analytical methods. In this study, analytical electron microscopy analyses were combined with sequential chemical extractions on soils spiked with Cu, Zn and Pb. Our aims were to study the metal sorption capacity of soil mineral phases and the effect of presence of iron oxide and carbonate on this property of soil minerals. Copper and Pb were found to be characterized by higher and stronger sorption on the studied samples than Zn. Only the former two metals showed significant differences in their immobilized metal amounts on the studied samples and soil mineral particles. Highest metal amounts were sorbed on the swelling clay mineral particles (smectites and vermiculites), but iron-oxide phases may also have similar lead sorption capacity. Alkaline conditions due to the carbonate content of soils resulted both in increased sorption on the mineral particles for Cu and in enhanced role of precipitation for all the studied metals. On the other hand, the intimate association of phyllosilicates and iron resulted in significant increase in metal sorption capacity of the given particle. The results of sequential extractions could be successfully completed by the analytical electron microscopy analyses for studying the sorption capacity of discrete mineral particles. Their integrated use helps us in better understanding the heavy metal-mineral interactions in soils.  相似文献   

16.
Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of 14C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.  相似文献   

17.

Remediation strategies using soil amendments should consider the time dependence of metal availability to identify amendments that can sustainably reduce available pollutant concentrations over time. Drying-wetting cycles were applied on amendments, soils and soil + amendment mixtures, to mimic ageing at field level and investigate its effect on extractable Cd, Cu, Ni, Pb and Zn concentrations from three contaminated soils. The amendments investigated were municipal waste organic compost and biochars. The amendments, soils and mixtures were characterised by their physicochemical properties at different ageing times. The amendments were also characterised in terms of sorption capacity for Cd and Cu. The sorption capacity and the physicochemical properties of the amendments remained constant over the period examined. When mixed with the soils, amendments, especially the compost, immediately reduced the extractable metals in the soils with low pH and acid neutralisation capacity, due to the increase in pH and buffering capacity of the mixtures. The amendments had a relatively minor impact on the metal availability concentrations for the soil with substantially high acid neutralisation capacity. The most important changes in extractable metal concentrations were observed at the beginning of the experiments, ageing having a minor effect on metal concentrations when compared with the initial effect of amendments.

  相似文献   

18.
Environmental Science and Pollution Research - As a commonly used amendment to soil contaminated by heavy metals, biochar has attracted great attention and has been applied for decades due to the...  相似文献   

19.
Sorption of phenanthrene by soils contaminated with heavy metals   总被引:4,自引:0,他引:4  
Gao Y  Xiong W  Ling W  Xu J 《Chemosphere》2006,65(8):1355-1361
The fate of polycyclic aromatic hydrocarbons (PAHs) in soils with co-contaminants of heavy metals has yet to be elucidated. This study examined sorption of phenanthrene as a representative of PAHs by three soils contaminated with Pb, Zn or Cu. Phenanthrene sorption was clearly higher after the addition of heavy metals. The distribution coefficient (K(d)) and the organic carbon-normalized distribution coefficient (K(oc)) for phenanthrene sorption by soils spiked with Pb, Zn or Cu (0-1000 mg kg(-1)) were approximately 24% larger than those by unspiked ones, and the higher contents of heavy metals added into soils resulted in the larger K(d) and K(oc) values. The enhanced sorption of phenanthrene in the case of heavy metal-contaminated soils could be ascribed to the decreased dissolved organic matter (DOM) in solution and increased soil organic matter (SOM) as a consequence of DOM sorption onto soil solids. Concentrations of DOM in equilibrium solution for phenanthrene sorption were lower in the case of the heavy metal-spiked than unspiked soils. However, the decreased DOM in solution contributed little to the enhanced sorption of phenanthrene in the presence of metals. On the other hand, the sorbed DOM on soil solids after the addition of heavy metals in soils was found to be much more reactive and have far stronger capacity of phenanthrene uptake than the inherent SOM. The distribution coefficients of phenanthrene between water and the sorbed DOM on soil solids (K(ph/soc)) were about 2-3 magnitude larger than K(d) between water and inherent SOM, which may be the dominant mechanism of the enhanced sorption of phenanthrene by soils with the addition of heavy metals.  相似文献   

20.
Chaturvedi PK  Seth CS  Misra V 《Chemosphere》2006,64(7):1109-1114
Release of heavy metals onto the soil as a result of agricultural and industrial activities may pose a serious threat to the environment. This study investigated the kinetics of sorption of heavy metals on the non-humus soil amended with (1:3) humus soil and 1% hydroxyapatite used for in situ immobilization and leachability of heavy metals from these soils. For this, a batch equilibrium experiment was performed to evaluate metal sorption in the presence of 0.05 M KNO(3) background electrolyte solutions. The Langmuir isotherms applied for sorption studies showed that the amount of metal sorbed on the amended soil decreased in the order of Pb(2+)>Zn(2+)>Cd(2+). The data suggested the possibility of immobilization of Pb due to sorption process and immobilization of Zn and Cd by other processes like co-precipitation and ion exchange. The sorption kinetics data showed the pseudo-second-order reaction kinetics rather than pseudo-first-order kinetics. Leachability study was performed at various pHs (ranging from 3 to 10). Leachability rate was slowest for the Pb(2+) followed by Zn(2+) and Cd(2+). Out of the metal adsorbed on the soil only 6.1-21.6% of Pb, 7.3-39% of Zn and 9.3-44.3% of Cd leached out from the amended soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号